
USING GRAPHS TO ANALYZE APL FUNCTIONS

Robert Metzger
Education Manager

I.P. Sharp Associates, Inc.
1200 First Federal Plaza
Rochester, N.Y. 14618

INTRODUCTION

Pictures and diagrams are used in a
variety of professions to analyze problems
and design solutions. Computing is no
exception. Flow charts were developed
early in the history of computing. They
were the first program design tool to
become widely used, and some people still
use them today. Programs which generated
flow charts from existing programs
followed close behind. So, using pictures
to help analyze programs is not a new
idea.

Another diagram commonly used to
design and analyze programs is the
subroutine call tree. These diagrams
show the hierarchical structure of a set
of programs in a tree format. These, too,
can be generated by a program. Just as
flow charts show flow of control within a
program, these charts show flow of control
between programs.

Flow charts and subroutine call
trees, as well as other diagrams
representing programs, can be viewed as
graphs in the sense of mathematical graph
theory. Graphs can be represented by at
least three kinds of matrices. Once we
have an array representation of a graph,
we can use APL to develop quantitative
measures of the qualities of these
programs.

The purpose of this paper is to show
how graphs can be used to analyze APL
functions. Several kinds of graphs are
introduced. In each case, APL functions
which generate matrix representations of
these graphs derived from APL programs are

Permission to copy without fee all or par t of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the
publication and its date appear, and notice is given
that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or special permission.

©1983 ACM-0-89791-095-8/83/0400-0153 $ 00.75

presented. Then, APL functions which
compute measures of the quality of a
program based upon these graphs are
suggested.

GRAPH THEORY

In graph theory, a graph consists of
a set of points (vertices) and a set of
lines (edges). In a directed graph
(digraph), the lines extend in a specified
direction. A graph may be represented by
a square boolean matrix. In this
connection (adjacency) matrix, if element
Ll;J] is i, then there is a line from
point I to J. Unless the following two
conditions are met, the graph is
considered a multigraph.
i) Multiple lines between the same pair of
points are not allowed.
2) Lines which begin and end at the same
point are not allowed.
Therefore, the connection matrix is always
boolean, and the main diagonal contains
only zeros.

The number of points or nodes in the
graph is i+oGRAPH. The number of lines in
the graph is +/,GRAPH. The in-degree of a
point is the number of lines ending at
that point. The out-degree of a point is
the number of lines starting at that
point. The expression +/GRAPH will give
the out-degrees of the nodes and +/GRAPH
will yield the in-degrees.

If GRAPH identifies adjacent
vertices, then the result of GRAPHV. AGRAPH
identifies all paths of length one or two
between the vertices of the graph. The

generalization of this operation is the
transitive closure. It identifies all
paths of any length between two points.
It can be computed with the following
function.

CLOSUREQ ^l,~:C+~v~v.^~ O CLOSURE C O C

A graph is connected if there is a path
between any two of its vertices. This can
be tested wth ^/^/CLOSURE GRAPH.

- 153 -

This function, like several others in
this paper, is listed in the Direct Form,
which was first introduced in [IVER76].
The notation has been modified, per
Iverson's current usage, in two ways. The
diamond (O) is used instead of the colon
(:) to separate the name of a function
from its body. In addition, the order of
the segments in a conditional Direct form
is
NAMEQ IF Q ELSE(0) O THEN(l).

A short exposition of graph theory in
terms of APL can be found in "Notation as
a Tool of Thought" [IVER80]. More
detailed explanations of graph theory
concepts can be found in [CHRI75].
Applications of graph theory done in APL
are presented in [BLAA80]. An entire
chapter of [BERZ75] is devoted to the uses
of graphs in analyzing programs, and
includes an annotated bibliography.

FLOW CHARTS

A flow chart is a picture which shows
the possible paths of control flow a
program can take. Texts enclosed by
geometric figures are connected by lines
with arrows which indicate direction.

There are a number of figures used,
some of which have conflicting meanings.
The five most common are Terminal,
Connector, Input~Output, Process,
Decision. The first two are necessary
because most flow charts don't fit on a
single piece of paper. The next two
figures have the common characteristic
that only one arrow can leave them. They
represent work being done. The last
figure represents those instructions which
cause flow of control to go in one of
several directions. They are the reason
for having flow charts. The flow chart of
a program which has no decision blocks is
trivial.

If we remove the texts from a flow
chart and make all the figures into
points, it is easy to see that a flow
chart is a graph. In fact, flow charts
are directed graphs (digraphs), since the
lines indicate connection in one direction
only.

Since a flow chart is a graph, we can
apply the metrics of graph theory to
compute quantitative measures of the flow
of control of a given program. A linear
program, ie. one which contained no
branches, will have l's in the diagonal
above the main diagonal. A linear program
of four statements would be represented by
the matrix below.

0 1 0 0
0 0 1 0
0 0 0 1
0000

Conditional branch statements have
out-degrees of 2 or more. A program
segment and its graph are listed below.

[o] CTR÷first-i
[o] LMT÷last
[o] LOOP:+(LMT<CTR+CTR+i)/END
[o] work
[o] +LOOP
/o] END:

OUTDEGREES
0 I 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 1 2
0 0 0 0 1 0 1
O0 i000 i
000000 0

Implementing the flowchart involves
two steps. First , the control flow must
be analyzed. Then, the diagram must be
drawn. The function FLOWCHART calls two
subfunctions to do this.

V FLOWCHART NAME;TEXT
[i] TEXT+DCR NAME
/2] TEXT DRAWCHART 0 GRAPHFLOW i 0 +TEXT V

(Programming Note: Names with alternating
underscores are used in functions which
execute DCR in order to minimize name
conflicts.)

The function GRAPHFLOW returns a
connection matrix. It assumes that all
branch targets in a function are labelled
lines. As with each of the functions in
this paper whose name begins with GRAPH,
the left argument of GRAPHFLOW is a
boolean scalar. If it is i, the rows of
the result are labelled, and the result is
a character matrix. If it is 0, no labels
are provided, and the result is a numeric
matrix. The right argument is the
canonical representation of a function,
with the header removed.

Metzger - 154 - Using Graphs to Analyze APL Functions

g GRAPH+CONTROL GRAPHFLOW TEXT
;CODE;SELECT~LABELS;LINES;BRANCHES
;TARGETS;CTR;LMT;LINE;MASK;NAMES;WIDTH
[1] CODE+MARKCOOE TEXT
[2] SELECT+-CODEATEXT=':'
[3] SELECT+, 0 1 +^\(~^/SELECT),SELECT
[4] LABELS+(pTEXT)pSELECT\SELECT/,TEXT
[5] LABELS+(LABELSv.~' ')~

(' 'v.zLABELS)/LABELS
[6] LINES+(v/(pTEXT)pSELECT)/Ii÷pTEXT
[7] GRAPH+O, 0 -i +(~itpTEXT)o.=Ii÷pTEXT
[8] BRANCHES+(v/CODEATEXT='÷')/II÷pTEXT
[9] GRAPH[BRANCHES;]+O
[i0] CTR+O
[ii] LMT+pBRANCHES
[12]L00P:+(LMT<CTR+CTR+I)pEND
[13] LINE+TEXT[BRANCHES[CTR];]
[14] LINE+((LINEI':')xBRANCHES[CTR]e

LINES)+LINE
[15] MASK+(-pLINE)÷CODE[BRANCHES[CTR]~]
LI6] NAMES+MASK GETNAMES LINE
[17] WIDTH+(-i÷pNAMES)r-I÷pLABELS
[18] TARGETS+(v/(((i÷pLABELS),WIDTH)÷

LABELS)^.=~((i÷pNAMES),WIDTH)
÷NAMES)/LINES

[19] TARGETS+TARGETS, (~^/MASKALINEe ' +',
ALFNUM)/i+BRANCHES[CTR]

[20] GRAPH[BRANCHES[CTR];TARGETS]+I
[21] +LOOP
[22]END:+(~ieCONTROL)pEXIT
[23] GRAPH+(w((I÷pGRAPH),i)p,I÷pGRAPH),

' ',~GRAPH
[24]EXIT: V

(Programming Note: This function assumes
that the targets of all branches are
labels. It will not handle branches to
numbers or OLC.)

The function GETNAMES returns a
matrix containing all the names used in a
program text. The MARKCODE function
produces a boolean vector marking those
characters in a program text which are not
literals or comments.

V NAMES+MASK GETNAMES TEXT
~SELECT~EXPAND
[I] TEXT+TEXT,' '
L2] MASK+,(pTEXT)÷MASK
[3] TEXT+,TEXT
[4] SELECT+MASK^TEXT~

ALPHABET.'O0123456789'
[5] TEXT+SELECT\SELECT[TEXT
[6] TEXT+((TEXT~' ')vTEXT~-i~TEXT)/TEXT
[7] EXPAND+(TEXT=' ')/~pTEXT
[8] EXPAND+-i+EXPAND-O,-i+EXPAND
[9] EXPAND+(EXPANDo.alr/EXPAND),i
[i0] NAMES+ 0 -i +(pEXPAND)p(.EXPAND)\TEXT
[ii] NAMES+(NAMES[;i]£ALPHABET)~NAMES ?

? MASK+MARKCODE TEXT
[1] MASK+TEXT=''''
[2] MASK+MASKv~\MASK
[3] MASK+MASK^-v\(TEXT=tA')^MASK V

(Programming Note: The variable ALPHABET
should contain all valid alphabetics. The
variable C__R should contain the Carriage
Return, or New Line character.)

The function DRAWCHART has been
omitted in the interest of brevity. These
functions will work on any IBM-compatible
APL. They would be more complicated if
they had to handle such language
enhancements as the diamond statement
separator.

we can now see a way to compute a
measure of the flow of control complexity
of an APL program. We can compute the
ratio of the number of branch edges to the
number of statement vertices. The
argument to this function is a boolean
connection matrix.

FLOWCOMPLEXITYIÙ (+lOr-l++l~)÷l÷p~

The result this program gives for a
linear program is 0. A program which
consisted of nothing but two-way
conditional branches would be given a
value of i. The larger the result, the
more dense and complicated the branching.

There is an alternatve way of
computing flow complexity. The concept
was originally explained in [MCCA78]. If
a graph is connected, the number of
independent paths in the graph is i+ the
number of edges + the number of nodes.
Now program flow graphs are not
connected. If we assume, however, that
there is an edge from the last statement
to the first, then they are connected.
This means that the number of independent
branch paths is (i+((+/+/GRAPH)-i÷pGRAPH))
+i (for the imaginary path). This the
rationale for the following function.

FLOWCOMPLEXITY20 2+(+l+l~)-l÷p~

This measure of flow complexity is also
very useful in generating test cases to
test out a program.

FUNCTION CALL TREES

A function call tree represents the
hierarchy of functions. It shows which
function may call another during a
particular execution. It does not show
the sequence of the functions calls, nor
the conditions under which they may be
called. It consists of the names of the
functions connected by lines which
indicate subroutine calls.

We can use the same boolean
connection matrix to represent the
subroutine calls. The connection matrix
is a square matrix in which there is a row
and column for each function in the
workspace. OLX must be treated as a
function for this representation to make
sense. If element [l;J] is i, then
function I calls J. If we relax the
requirement that the main diagonal be 0
(no loops), we can test for the presence
of recursive functions with
v/l i~GRAPH. Strictly speaking, a graph

Metzger - 155 - Using Graphs to Analyze APL Functions

showing recursions is a multigraph.
can locate the main routine in the
workspace with (O=+~GRAPH)~I.

We

For an APL workspace, we may have to
represent the hierarchy with more than one
tree. We will have several roots (and
several trees) if there are functions
which do not trace their activation back
to ULX. These functions will be activated
by the user directly while in immediate
execution mode. Paul Berry calls such
workspaces 'open systems'. Thus the test
for an open (versus closed) system is
i<+/O=+~GRAPH.

Implementing the function call tree
also involves an analysis and drawing
phase.

V FNCALLTREE~FNS
[i] FNS÷QNL 3
[2] FNS÷((-I÷pFNS)÷'DLX'),[i] FNS
[3] FNS DRAWTREE 0 GRAPNCALLS FNS V

GRAPHCALLS returns a boolean matrix
representing the function call tree. The
program which draws the trees has been
omitted. The right argument is a
character matrix containing functions
names, one per row.

V GRAPH÷CONTROL GRAPHCALLS FNS
;CTR;LMT;NAMES;WIDTN
[I~ GRAPH÷(2pi÷pFNS)pO~O
[2] CTR÷O
[3] L~T÷ifDFNS
[4] L00P:÷(LM~<CTR÷CTR+I)DEND
[5] NA~ES÷,Y, (2--3 pTDcR, T)

[i+,D,=i÷EES[C~R;];]),' F~S[C~R;]'
[6] NAMES÷((12=ppNAMES),O)+NAMES
[7] ÷(O(pNAMES)pL00P
[8] NAMES÷(MARKCODE NAMES) GETNAMES N~M~S
[9] WIDTH÷(-IfDENS)[-~÷~NAMES
[i0] GRAPH[CTR;]÷v/(((ifoFNS),WIDTH)÷FNS)

A.=~((17oNAMES),WIDTH~÷NAMES
[ii] ÷LOOP
[12] E~:~(~icCONTROL)pEXIT
[13] GRAPH÷FNS,' ',~GRAPH
[14] EXIT: V

The function call graph leads us to a
way of quantifying the modularity of an
application. We can make the following
generalizations about modular systems.
i) Modular systems normally have fewer
statements per program than monolithic
ones.
2) Modular systems normally have more
references to a given program than
monolithic ones.
Both of these phenomena occur when more
than one function uses sub÷unctions which
are common to several functions.

The degree of modularity of a set of
functions can be calculated with the
following function. The argument is a
matrix namelist of functions to be
analyzed. The larger the result of the

MODULARITY function, the less modular the
set of programs is.

MODULARITYQ ((+/COUNTFNLINES ~)~l÷p~)
~i+(+/+~GRAPHCALLS ~)~l÷p~

V LINES+COUNTFNLINES FNS;C~R;LMT
[I] LINES+~O
[2] CTR÷O
[33 L~T÷i÷pFNS
[4] L00P:+(LMT<CTR÷CTR+i)/END
[5] LINES÷LYNES?-i+~÷oDCR ~NS[CfR;]
[6] ÷LOOP
[7] END: V

'Modularity' has been in the past a
pious programmer's platitude. Everyone
said it was good, but no one could or
would define what it meant. Now that you
have an objective definition of
modularity, you can judge for yourself who
just preaches it and who actually
practices it.

VARIABLE DEPENDENCE

A variable dependence graph shows the
relationships between variables in a
program. The vertices represent the
variables in the program. The edges
represent references to the values of
other vertices (variables) in an
assignment.

If we analyze a single APL program,
we cannot get a true variable dependence
graph. This is because we cannot resolve
the referent type of names which are not
assigned. They can be global functions or
variables. The syntax of the references
in the function are not sufficient, in
general, to determine the referent type of
the object. We can, however, compute a
name dependence graph which includes
global functions and variables.

If we analyze the following function,
we will get the name dependence graph
listed below it. (The names have been
supplied for reference).

VZ÷X JOIN Y;W
[1] W+(-i÷pX)F(-i+pY)
[2] Z÷(((i÷pX),W)÷X),[I] ((i÷pY),W)÷Y V

X 0 0 0 0
Y 0 0 0 0
W 1 1 0 0
Z 1 1 1 0

The names are listed in the order that
they appear in the program. The arguments
are considered to be assigned on line [0],
so they appear first.

We can note several standard features
of these graphs. Unless the arguments are
re-assigned, their rows will be all zeros.
The rows related to sub÷unctions will also

Metzger - 156 - Using Graphs to Analyze APL Functions

be zeros, as will any global variables
which are not assigned. This graph may or
may not be a multigraph, because the
previous values of variables may be used
to re-assign them.

The functions listed below implement
the variable dependence graph. The right
argument to GRAPHASSIGN is a character
vector which contains the name of the
function to be analyzed.

V GRAPH+CONTROL GRAPHASSIGN NAME
;TEXT;ALFNUM;NUMBERS;SELECT;ORDER;NAMES
[13
[2]
[3]
[4]

[5]
[6]
[7]
[8]
[e]
[103

[11]

[12]

TEXT+O MARKHEADER OCR NAME
TEXT+(,(MARKCODE TEXT),I)/,TEXT,CR
ALFNUM÷TEXTeALPHABET,'OI234567890~'
TEXT+ALFNUM MARKINDEXASSIGN TEXT
SELECT+ALFNUM COMPRESSTEXT TEXT
TEXT+SELECT[TEXT
ALFNUM+SELECT/ALFNUM
NUMBERS+ALFNUM REFNUMBERS TEXT=CR
SELEC~+A LFNUM~- 1 + 0, A LFNUM
NAMES+(-SELECT/ALFNUM) MATFROMVEC
SELECT[TEXT
ORDER+(' ',ALPHABET,'Oi23456789')
CHARMATGRADE 0 1 +NAMES
GRAPH+NUMBERS[ORDER] BUILDASSIGNGRAPH
NAMES[ORDER;] V

The function MARKHEADER is used here
is extract the names of the arguments. It
also marks them as assigned on line [0].

V FUNCTION+CONTROL MARKHEADER TEXT
;HEADER;RESULT;PARMS;TEMP;LOCALS;OIO
[1]
[2]
[s]
[4]
[s]
[6]

[7]
[8]

[9]
[10]
[11]
/12]
[13]
[14]

[153

[Is]

OIO+l
HEADER+TEXT[i;]
HEADER+(@v\~' '~HEADER)/HEADER
LOCALS+(-I+HEADERi';')+HEADER
HEADER+(-pLOCALS)+HEADER
RESULT+(('+'eHEADER)xHEADER,'+,)÷
HEADER
HEADER+(oRESULT)+HEADER
RESULT+(-I+RESULT),(O~oRESULT)
/-i÷-i+OAV
PARMS+''
+(2 i 0 =+/HEADER=' ')[LEFT,RIGHT,END
LEFT:TEMP+HEADERi' '
PARMS+((-i+TEMP)÷HEADER),-i÷-2+OAV
HEADER+TEMP+HEADER
RIGHT:PARMS+PARMS,((HEADER~' ')
+HEADER),-i÷-2+OAV
END:HEADER+(CONTROL/RESULT),PARMS
,(CONTROL[LOCALS)
FUNCTION+((-i÷oTEXT)÷HEADER)
,[0IO] 1 0 +TEXT V

The function MARKINDEXASSIGN flags
those index references (A[...]) which are
actually indexed assignments.

[1]
[2]
[3]
[4]

[5]

[6]

[7]
[8]

[9]

[10]

V FUNCTION+ALFNUM MARKINDEXASSIGN TEXT
;LOCATIONS;BRACKETS;POSITIONS;SELECT

LOCATIONS+TEXT~'[]'
+(-v/LOCATIONS)oEND
BRACKETS+LOCATIONS[TEXT
POSITIONS+(BRACKETS=']')++\
1 -i['[]'iBRACKETS]
POSITIONS+(LOCATIONS/~pLOCATIONS)
[~POSITIONS]
POSITIONS+((O.5×oPOSITIONS),2)
pPOSITIONS
SELECT+(-i~ALFNUM)A~ALFNUM
POSITIONS+(POSITIONS[;I]ESELECT/
~oSELECT)~POSITIONS
TEXT[(TEXT[POSITIONS[;2]+i]='+')
/POSITIONS[;i]]+-i÷OAV
END:FUNCTION+TEXT V

The next four functions do most of
the work to prepare a traditional cross
reference listing. COMPRESSTEXT selects
the names in the text and the symbols
immediately to their right. REFNUMBERS
computes the line numbers that the names
are located on. MATFROMVEC creates a
matrix of the names in the text.
CHARMATGRADE grades the matrix namelist.
On SHARP APL, it can be replaced with a
call to dyadic grade up.

V SELECT+ALFNUM COMPRESSTEXT TEXT
;PARTN;LINES;TEMP
[i] LINES+TEXT~C_R
[2] SELECT+LINESvALFNUMv-i+O,ALFNUM
[3] TEXT+SELECT[TEXT
[4] LINES+SELECT[LINES
[5] ALFNUM+SELECT/ALFNUM
[6] PARTN+LINESvALFNUMA--I+O,ALFNUM
[7] TEMP+PARTN/TEXTe'Oi23456789~O'
[8] SELECT÷SELECT\~~\PARTNkTEMP~-i+O,TEMP
V

V NUMBERS+ALFNUM REFNUMBERS LINES
;PARTN;POSITIONS
[i] PARTN+ALFNUMA--i+O,ALFNUM
[2] POSITIONS+(PARTNvLINES)/LINES~PARTN
[3] POSITIONS+POSITIONS/*oPOSITIONS
[4] NUMBERS÷(POSITIONS-IpPOSITIONS)

++\PARTN/LINES V

V MATRIX+DELIMITERS MATFROMVEC VECTOR
;EXPAND;LENGTH;ENDS
Ll] ENDS+DELIMITERS/IoDELIMITERS
[2] LENGTH+-i+ENDS-O,-I+ENDS
[3] EXPAND+(LENGTHo.a~[/LENGTH),i
[4] MATRIX+(oEXPAND)p(,EXPAND)\VECTOR V

V ROWS+KEY CHARMATGRADE MATRIX
;BASE;COLUMNS
[1] ROWS+Ii÷o~ATRIX
[2] BASE+i+oKEY
[3] COLUMNS+I+pMATRIX
[4] COLUMNS+(-COLUMNS[[BASE®2147483647)

÷ICOLUMNS
[5] L00P:+(O=oCOLUMNS)pEND
[6] ROWS+ROWS[~BASE~KEY*MATRIX

[ROWS;COLUMNS]]
[7] COLUMNS+COLUMNS-oCOLUMNS
[8] COLUMNS+(COLUMNSzi)/COLUMNS
[9] ÷LOOP
[i0] END: V

Metzger - 157 - Using Graphs to Analyze APL Functions

BUILDASSIGNGRAPH takes the cross
reference information and turns it into a
boolean matrix representing the graph. It
uses partitioning techniques to handle the
non-rectangular data.

V GRAPH+NUMBERS BUILDASSIGNGRAPH NAMES
~USAGE~PARTN;MAX;SELECT;ORDER~CTR;LMT;SET;
SEGMENT
[i] USAGE+('÷:[+÷',(-i÷OAV),' ')

[('÷:[',-3÷DAV)L,NAMES[;-i÷pNAMES]]
[2] NAMES+ 0 -I +NAMES
[3] PARTN+I.I+v/NAMES~-leNAMES
[4] NAMES+PARTN~NAMES
[5] SELECT+~PARTN PARTNORREDUCE ':'=USAGE
[6] NAMES+SELECT~NAMES
[7] SELECT+~\PARTN\SELECT~-i+O,SELECT
[8] NUMBERS+SELECT[NUMBERS
L9] PARTN+SELECT/PARTN
[I0] USAGE+SELECT[USAGE
[ii] ORDER÷~PARTN/NUMBERS
[12] NAMES+NAMES[ORDERs]
[13] ORDER+~(~ORDER)[+kPARTN]
t14] PARTN+PARTN[ORDER]
[15] NUMBERS+NUMBERS[ORDER]
[16] USAGE+USAGE[ORDER]
/17] SET+(NUMBERS~O)^-USAGE('['
[18] CTR+O
[19] LMT++/PARTN
[20] GRAPH+(O,LMT)pO
[21] SEGMENT+LMT÷I
[22] LOOP:+(LMT<CTR+CTR+I)pEND
[23] SELECT+SETA~\PARTNkSEGMENT~

-i+O.SEGMENT
[24] GRAPH÷GRAPH, J1] PARTN PARTNORREDUCE

(NUMBERSx(~SELECT)+-ixSELECT)
eSELECT/NUMBERS

[25] SEGMENT+-i#SEGMENT
[26] +LOOP
[27] END:+(~ieCONTROL)pEXIT
[28] GRAPH+NAMES.' ',,GRAPH
[29] EXIT: V

PARTNORREDUCEO (Cll@C+(~v~)l~)s~/~

(Programming Note: This function assumes
that the flow of control in the program it
is analyzing is top-down. This means that
the line number of every branch
destination is greater than or equal to
the line number of the origin, except for
branches returning to the head of a loop.)

We have an alternative function which
uses the SHARP APL implementation of
enclosed arrays. The ratio of statements
between the two is almost 3 to i. This
would seem to substantiate the claims that
have been made about productivity
improvements from enclosed arrays. When a
data structure is non-rectangular, the
difference between an implementation which
has enclosed arrays and one which doesn't
may be as significant as the difference
between APL and FORTRAN.

The reduction in coding is due to
replacing partitioning operations with
uses of the new operators. Lines [5 6 7 8
9 i0] and a subfunction call are replaced
by line [5]. Lines [Ii 12 13 14 15 16]

are replaced by line L6]. Lines [17 18 19
20 21 22 23 24 25 26], which include a
loop and a subfunction call, are replaced
bY lines [7 8].

V GRAPH+NUMBERS BUILDASSIGNGRAPH2 NAMES
;USAGE;PARTN~MAX;TABLE~SELECT;OPS
[i] USAGE+,('+:[+÷',(-i+OAV),' ')

L('+:['.-3÷OAV)*,NAMES[;-i÷pNAMES]]
[2] NAMES+ 0 -I +NAMES
[3] PARTN+i,I+v/NAMES~-ieNAMES
[4] TABLE+(<~I PARTN?NAMES),

(PARTN 2~< NUMBERS),[1.5]
PARTN 2~< USAGE

[5] TABLE+(N': 'E~>TABLE[;3]){TABLE
[6] TABLE+TABLE[~i÷Z>TABLE[~2];]
[7] SELECT+(N">TABLE[;3]~"><

'[')^">O~">TABLE[;2]
[8] GRAPH+~v/~>((-">SELECT)/">TABLE[;2])

o.~">SELECT/">TABLE[;2]
[9] ÷(~I~CONTROL)oEXIT
[10] OPS+ 1 1 0 1 O GRAPH+(WTABLE[;.1]).

' '.~GRAPH
[11] EXIT: V

Space limitations prevent me from
discussing the details of how this
function works. Those interested in this
implementation may read more about it in
[BERN8~]. Topics demonstrated here
include:
i) ON (~) as an axis operator (<~i),
2) ON (o) as a partitioning operator
(2~<),
3) ON (Z) as a composition operator (e~>
and +~>),
4 ! WITH (") as the dual operator (~"> ^">
E > ~">) ,

5) Derived functions as arguments to
operators (S/"> o.e"> v/">),
6) OPS for controlling the formatting of
enclosed arrays.

What is the significance of the name
dependence graph? To learn this, we must
recall a concept from graph theory. The
transitive closure of a graph identifies
all paths of any length between two
points. If (CLOSURE GRAPH)[I;J] is i,
there is a path of some length from I to
J.

In the case of the name dependence
graph, its closure will indicate any
dependence of one name on another. This
dependence may be direct or indirect. If
I depends on J, J depends on K, and K
depends on L, then (CLOSURE GRAPH)[I;L]
will be I.

This result may be useful in program
maintenance. You can quickly check all
the variables which will be effected if
you change the definition of Some object.
If you just look down the column
corresponding to that variable, it will
mark all variables that depend on that
variable.

The closure of this graph may also be
useful in debugging. If you just look

Metzger - 158 - Using Graphs to Analyze APL Functions

across the row corresponding to that
variable, i~-wQill mark all the names that
it depends on. If the value of a variable
is wrong, you can easily identify all the
objects which might be the source of the
problem.

Perhaps the most interesting use of
this graph is in the area of software
metrics. It can be used to measure an
important software quality- module
cohesion. This concept is an essential
part of the discipline of Structured
Design. It is defined by Yourdon and
Constantine [YOUR79] as "the degree of
functional relatedness of processing
elements within a single module." Myers
[MYER78] defines his equivalent term
('module strength') as "a measurement of
the relationships among the elements
within a single module."

Both of these books propose a
hierarchy of the degrees of cohesion.

Yourdon Myers
coi~ental coincidental
logical logical
temporal classical
procedural procedural
communicational communicational
sequential
functional functional

informational

They describe the distinctives of each
these degrees. Unfortunately, while they
speak of 'degree' and 'measurement' their
descriptions are very qualitative.

The most desirable degree of cohesion
is functional. The definitions are a
module in which "every element of
processing is an integral part of, and
essential to, the performance of a single
function s [YOUR79] and "a functional
strength module is defined as a module
that performs a single specific function."
[MYER78]

A broad class of functionally
cohesive programs are those which compute
an explicit result based entirely upon one
or two arguments. Such functions can be
easily identified with the closure of the
name reference graph. If the only rows
which are all zeros are those
corresponding to the arguments, and if the
row corresponding result is all l's,
except for the column corresponding to
itself, then the program is functionally
cohesive. This means that the result
depends on every variable which is
calculated, including the arguments.
Every calculation is done for the ultimate
goal of calculating the result.

This definition can be broadened. If
only arguments and results are used for

inter-function communication, we can relax
the restriction on all-zero rows. They
may also correspond to subfunctions.
Either of these definitions is sufficient,
but not necessary. In other words, there
may be programs which don't fit these
criteria which are functionally cohesive.
Even this partial definition, however, is
much more satisfactory than the 'warm
fuzzies' which Structured Design advocates
have been content with in the past.

FUNCTION CONNECTION

A function connection graph shows the
data relationships between functions. The
vertices represent the functions being
analyzed. The edges represent references
to variables belonging to another
function.

If we analyze the following
functions, we will get the function
connection matrix listed below them. (The
names have been supplied for reference).

VR÷X FO01Y
[I] R÷X+F002 Y V

VR+Y FO02 Z
[1] R+Z-FO03 Y V

VR÷A FO03 W
[i] R÷X+A+W×Y V

FO01 0 0 Q
FO02 0 0 0
F003 1 1 0

In this case, FO03 uses a variable
belonging to FOOl, and also one belonging
to F002.

The functions listed below implement
the function connection graph. The right
argument to GRAPHCONNECT is a character
matrix. It should contain the names of
the functions to be analyzed, one name per
row.

V GRAPH+COnTROL GRAPHCONNECT FNS
~CTR~LMT~XREFTAB;TEMP~WIDTH
[17 XREFTAB÷ 0 3 p''
[2] CTR÷O
[3] ~J+l*oF~S
[%] L00F:÷(LMT<CTR÷CTR+1)pEND
[5] TEMP÷~A~[CTR]oXREFNL ~R FNS[CTR~]
[6] WIDTH÷(-i÷~XREFTAB)[-i÷pTEMP
[7] XREFTAB÷(((I÷pXREFTAB).WIDTH)÷

XREFTAB).[1]((i÷,TfMf).WIDTH)÷TEMf
[8] ÷LOOP
[9] END:GRAPH÷BUILDCONNECTGRAPH XREFTAB
[10] ~(~I~C~NTROL),E~I~
[11] GRAPH÷FNS.' '.vGRAPH
[12]EXIT: V

The function XREFNL produces a cross
reference name list for a single function.
Its argument is a canonical representation
of an APL function. It presumes the
availability of the subfunctions used by
GRAPHASSIGN.

Hetzger - 159 - Using Graphs to Analyze APL Functions

V TABLE+XREFNL TEXT;ALFNUM
;SELECT;NAMES;ORDER;NUMBERS;PARTN~USAGE
[i] TEXT+I MARKHEADER TEXT
[2] TEXT+(,(MARKCODE TEXT),I)/,TEXT.CR
[3] ALFNUM+TEXTeALPHABET,'Oi23456789D~'
[4] SELECT+ALFNUM COMPRESSTEXT TEXT
/5] TEXT+SELECT~TEXT
[6] ALFNUM+SELECT/ALFNUM
[7] NUMBERS+ALFNUM REFNUMBERS TEXT=CR
[8] SELECT+ALFNUMv-i+O,ALFNUM
[9] NAMES+(~SELECT/ALFNUM) MATFROMVEC

SELECT~TEXT
[10] ORDER+(' ',ALPHABET,'0123456789')

CHARMATGRADE 0 1 +NAMES
[11] USAGE+,NAMES[ORDER;-I÷oNAMES]
[12] NAMES+ 0 -1 +NAMES[ORDER;]
[13] NUMBERS+NUMBERS[ORDER]
[14] PARTN+I,i+v/NAMES~-leNAMES
[15] TABLE+OAV[i+PARTN PARTNORREDUCE

O=NUMBERS],PARTN/NAMES
[16] TABLE÷(~PARTN PARTNORREDUCE

':'=USAGE)4TABLE V

The function BUILDCONNECTGRAPH turns
the accumulated cross reference lists from
all the functions into the boolean matrix
representing the connection graph.

V GRAPH+BUILDCONNECTGRAPN XREF
~FUNCTIONS;PARTN~LOCAL~VARS;USAGE
[1] FUNCTIONS+DAVIXREF[;I]
[2] PARTN+i,i+FUNCTIONS~-leFUNCTIONS
[3] LOCAL÷2=OAViXREF[;2]
[4] VARS+ 0 2 +XREF
[5] USAGE+VANS MATRIXINDEXOF VARS
[6] CTR+O
[7] LMT++/PARTN
[8] GRAPH+(O,LMT)pO
[9] SEGMENT+LMT÷I
[iO]L00P:+(LMT<CTR+CTR+i)oEND
[Ii] SELECT+(~LOCAL)A~\PARTN\

SEGMENT~-i+O,SEGMENT
[12] GRAPH+GRAPH,[1] PARTN PARTNORREDUCE

USAGE~SELECT/USAGE
[13] SEGMENT+-i~SEGMENT
[14] +LOOP
[15]END:GRAPH+GRAPH^(I1*pGRAPH)o.~

~i÷oGRAPH V

MATRIXINDEXOFQ OIO++IA\~V.~e

Once again, we have an alternative
version which uses the SHARP APL enclosed
array implementation to handle the ragged
data. No new enclosed array concepts are
introduced here.

V GRAPH+BUILDCONNECTGRAPH2 XREF
~FUNCTIONS;PARTN;LOCAL;VARS;USAGE
[i] FUNCTIONS+OAViXREF[;1]
[2] PARTN+I.i+FUNCTIONS~-leFUNCTIONS
[3] LOCAL+2=DAV~XREF[;2]
[4] VARS÷ 0 2 +XREF
[5] USAGE+PARTN 2~< VANS MATRIXINDEXOF

VANS
[6] GRAPN+~v/~>USAGEo.e

"'>(PARTN 2~< ~LOCAL)/">USAGE
[7] GRAPH+GRAPH^(~1÷pGRAPH)o.~II÷pGRAPH V

What is the significance of the
function connection graph? Like the

previous graph, it can be used to measure
an important software quality-- module
coupling. Yourdon and Constantine
[YOUR79] define this as "the measure of
the strength of interconnection between
one module and another." One of the
chief goals of Structured Design is to
produce modular software. Thus, it is
desirable to maximize module cohesion and
minimize module coupling.

Once again, Yourdon/Constantine and
Myers [MYER78] present similar, but not
identical, definitions of the degrees of
coupling.

Yourdon

hybrid coupling
content coupling
common data coupling

control coupling

data coupling

Myers
no direct coupling

content coupling
common coupling
external coupling
control coupling
stamp coupling
data coupling

Some of these categories are not
relevant in the APL environment. Besides
the obvious 'no coupling', the other two
that definitely are relevant in an APL
environment are 'common coupling' and
'data coupling'. The first occurs when
data is transmitted between functions
through the use of variables which are
global to one or both of them. The second
occurs when data is transmitted between
functions exclusively through arguments
and results.

Using the connection graph to
determine coupling is rather easy. Let

G+O GRAPHCALLS NL
H+O GRAPHCONNECT NL

We find the following results. G ̂ ~H
identifies the connections which are data
coupled. K+H^Gv~G identifies the
connections between functions which are
common coupled, and where one function is
called by another. K^~K identifies the
connections between functions which are
common coupled, and where neither function
calls the other. If O=+/,X then the
programs have no direct coupling.

CONCLUSION

This paper has presented 4 graphs
which may be used to analyze APL programs.
These are the flow of control graph, the
function call graph, the variable
dependence graph, and the function
connection graph.

In each case, the power of APL made
it relatively easy to write functions to
produce matrix representations of these

Metzger - 160 - Using Graphs to Analyze APL Functions

graphs directly from APL programs. When
the data being processed was essentially
non-rectangular, the SHARP APL
implementation of enclosed arrays proved
to be a particularly concise and powerful
notation. The power of APL was used again
to define quantitative measures of
important software qualities, based upon
these graphs. In these examples, the
uniqueness of APL can be seen in the fact
that APL programs were both the objects
and means of analysis.

REFERENCES

BERN80 BERNECKY, R. and IVERSON, K. E.
"Operators and Enclosed Arrays,"
Proceedings of the 1980 APL
Users Meeting, I.P. Sharp
Associates, Ltd., Toronto, 1980.

BLAA80 BLAAUW, G.A. and DUIJVESTIN,
A.J.W. "The Use of the Inner
Product Operator of APL in
Graph Applications, APL 80,
North Holland Publishing Co.,
Amsterdam, 1980.

BERZ75 BERZTISS, A. T.
Data Structures-- Theory and
Practice, Academic Press,
New York, 1975.

CHRI78 CHRISTOFIDES, N. Graph Theory--
A__n Algorithmic Approach,
Academic Press, New York, 1975.

IVER80 IVERSON, K. E. "Notation as a Tool
of Thought," Communications of
the ACM 23, (1980), 444-465.

MCCA78 MCCASE, T.J. "A Complexity
Measure, =IEEE Transactions
on Software Engineering, Vol SE-2,
Dec. 1976, pp. 308-320.

MYER78 MYERS, G. J. Composlte/Structured
Design, Van Nostrand Reinhold Co.,
New York, 1978.

YOUR79 YOURDON, E. and CONSTANTINE, L.
Structured Design, Prentice-Hall,
Englewood Cliffs, NJ, 1979.

Metzger - 161 - Using Graphs to Analyze APL Functions

