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INTRODUCTION 

Pictures and diagrams are used in a 
variety of professions to analyze problems 
and design solutions. Computing is no 
exception. Flow charts were developed 
early in the history of computing. They 
were the first program design tool to 
become widely used, and some people still 
use them today. Programs which generated 
flow charts from existing programs 
followed close behind. So, using pictures 
to help analyze programs is not a new 
idea. 

Another diagram commonly used to 
design and analyze programs is the 
subroutine call tree. These diagrams 
show the hierarchical structure of a set 
of programs in a tree format. These, too, 
can be generated by a program. Just as 
flow charts show flow of control within a 
program, these charts show flow of control 
between programs. 

Flow charts and subroutine call 
trees, as well as other diagrams 
representing programs, can be viewed as 
graphs in the sense of mathematical graph 
theory. Graphs can be represented by at 
least three kinds of matrices. Once we 
have an array representation of a graph, 
we can use APL to develop quantitative 
measures of the qualities of these 
programs. 

The purpose of this paper is to show 
how graphs can be used to analyze APL 
functions. Several kinds of graphs are 
introduced. In each case, APL functions 
which generate matrix representations of 
these graphs derived from APL programs are 
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presented. Then, APL functions which 
compute measures of the quality of a 
program based upon these graphs are 
suggested. 

GRAPH THEORY 

In graph theory, a graph consists of 
a set of points (vertices) and a set of 
lines (edges). In a directed graph 
(digraph), the lines extend in a specified 
direction. A graph may be represented by 
a square boolean matrix. In this 
connection (adjacency) matrix, if element 
Ll;J] is i, then there is a line from 
point I to J. Unless the following two 
conditions are met, the graph is 
considered a multigraph. 
i) Multiple lines between the same pair of 
points are not allowed. 
2) Lines which begin and end at the same 
point are not allowed. 
Therefore, the connection matrix is always 
boolean, and the main diagonal contains 
only zeros. 

The number of points or nodes in the 
graph is i+oGRAPH. The number of lines in 
the graph is +/,GRAPH. The in-degree of a 
point is the number of lines ending at 
that point. The out-degree of a point is 
the number of lines starting at that 
point. The expression +/GRAPH will give 
the out-degrees of the nodes and +/GRAPH 
will yield the in-degrees. 

If GRAPH identifies adjacent 
vertices, then the result of GRAPHV. AGRAPH 
identifies all paths of length one or two 
between the vertices of the graph. The 

generalization of this operation is the 
transitive closure. It identifies all 
paths of any length between two points. 
It can be computed with the following 
function. 

CLOSUREQ ^l,~:C+~v~v.^~ O CLOSURE C O C 

A graph is connected if there is a path 
between any two of its vertices. This can 
be tested wth ^/^/CLOSURE GRAPH. 
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This function, like several others in 
this paper, is listed in the Direct Form, 
which was first introduced in [IVER76]. 
The notation has been modified, per 
Iverson's current usage, in two ways. The 
diamond (O) is used instead of the colon 
(:) to separate the name of a function 
from its body. In addition, the order of 
the segments in a conditional Direct form 
is 
NAMEQ IF Q ELSE(0) O THEN(l). 

A short exposition of graph theory in 
terms of APL can be found in "Notation as 
a Tool of Thought" [IVER80]. More 
detailed explanations of graph theory 
concepts can be found in [CHRI75]. 
Applications of graph theory done in APL 
are presented in [BLAA80]. An entire 
chapter of [BERZ75] is devoted to the uses 
of graphs in analyzing programs, and 
includes an annotated bibliography. 

FLOW CHARTS 

A flow chart is a picture which shows 
the possible paths of control flow a 
program can take. Texts enclosed by 
geometric figures are connected by lines 
with arrows which indicate direction. 

There are a number of figures used, 
some of which have conflicting meanings. 
The five most common are Terminal, 
Connector, Input~Output, Process, 
Decision. The first two are necessary 
because most flow charts don't fit on a 
single piece of paper. The next two 
figures have the common characteristic 
that only one arrow can leave them. They 
represent work being done. The last 
figure represents those instructions which 
cause flow of control to go in one of 
several directions. They are the reason 
for having flow charts. The flow chart of 
a program which has no decision blocks is 
trivial. 

If we remove the texts from a flow 
chart and make all the figures into 
points, it is easy to see that a flow 
chart is a graph. In fact, flow charts 
are directed graphs (digraphs), since the 
lines indicate connection in one direction 
only. 

Since a flow chart is a graph, we can 
apply the metrics of graph theory to 
compute quantitative measures of the flow 
of control of a given program. A linear 
program, ie. one which contained no 
branches, will have l's in the diagonal 
above the main diagonal. A linear program 
of four statements would be represented by 
the matrix below. 

0 1 0 0  
0 0 1 0  
0 0 0 1  
0000 

Conditional branch statements have 
out-degrees of 2 or more. A program 
segment and its graph are listed below. 

[o] CTR÷first-i 
[o] LMT÷last 
[o] LOOP:+(LMT<CTR+CTR+i)/END 
[ o] work 
[ o ] +LOOP 
/o] END: 

OUTDEGREES 
0 I 0 0 0 0 1 
0 0 1 0 0 0 1 
0 0 0 1 0 1  2 
0 0 0 0 1 0 1 
O0 i000 i 
000000 0 

Implementing the flowchart involves 
two steps. First , the control flow must 
be analyzed. Then, the diagram must be 
drawn. The function FLOWCHART calls two 
subfunctions to do this. 

V FLOWCHART NAME;TEXT 
[i] TEXT+DCR NAME 
/2] TEXT DRAWCHART 0 GRAPHFLOW i 0 +TEXT V 

(Programming Note: Names with alternating 
underscores are used in functions which 
execute DCR in order to minimize name 
conflicts.) 

The function GRAPHFLOW returns a 
connection matrix. It assumes that all 
branch targets in a function are labelled 
lines. As with each of the functions in 
this paper whose name begins with GRAPH, 
the left argument of GRAPHFLOW is a 
boolean scalar. If it is i, the rows of 
the result are labelled, and the result is 
a character matrix. If it is 0, no labels 
are provided, and the result is a numeric 
matrix. The right argument is the 
canonical representation of a function, 
with the header removed. 
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g GRAPH+CONTROL GRAPHFLOW TEXT 
;CODE;SELECT~LABELS;LINES;BRANCHES 
;TARGETS;CTR;LMT;LINE;MASK;NAMES;WIDTH 
[1] CODE+MARKCOOE TEXT 
[2] SELECT+-CODEATEXT=':' 
[3] SELECT+, 0 1 +^\(~^/SELECT),SELECT 
[4] LABELS+(pTEXT)pSELECT\SELECT/,TEXT 
[5] LABELS+(LABELSv.~' ')~ 

(' 'v.zLABELS)/LABELS 
[6] LINES+(v/(pTEXT)pSELECT)/Ii÷pTEXT 
[7] GRAPH+O, 0 -i +(~itpTEXT)o.=Ii÷pTEXT 
[8] BRANCHES+(v/CODEATEXT='÷')/II÷pTEXT 
[9] GRAPH[BRANCHES;]+O 
[i0] CTR+O 
[ii] LMT+pBRANCHES 
[12]L00P:+(LMT<CTR+CTR+I)pEND 
[13] LINE+TEXT[BRANCHES[CTR];] 
[14] LINE+((LINEI':')xBRANCHES[CTR]e 

LINES)+LINE 
[15] MASK+(-pLINE)÷CODE[BRANCHES[CTR]~] 
LI6] NAMES+MASK GETNAMES LINE 
[17] WIDTH+(-i÷pNAMES)r-I÷pLABELS 
[18] TARGETS+(v/(((i÷pLABELS),WIDTH)÷ 

LABELS)^.=~((i÷pNAMES),WIDTH) 
÷NAMES)/LINES 

[19] TARGETS+TARGETS, (~^/MASKALINEe ' +', 
ALFNUM)/i+BRANCHES[CTR] 

[20] GRAPH[BRANCHES[CTR];TARGETS]+I 
[21] +LOOP 
[22]END:+(~ieCONTROL)pEXIT 
[23] GRAPH+(w((I÷pGRAPH),i)p,I÷pGRAPH), 

' ',~GRAPH 
[24]EXIT: V 

(Programming Note: This function assumes 
that the targets of all branches are 
labels. It will not handle branches to 
numbers or OLC.) 

The function GETNAMES returns a 
matrix containing all the names used in a 
program text. The MARKCODE function 
produces a boolean vector marking those 
characters in a program text which are not 
literals or comments. 

V NAMES+MASK GETNAMES TEXT 
~SELECT~EXPAND 
[I] TEXT+TEXT,' ' 
L2] MASK+,(pTEXT)÷MASK 
[3] TEXT+,TEXT 
[4] SELECT+MASK^TEXT~ 

ALPHABET.'O0123456789' 
[5] TEXT+SELECT\SELECT[TEXT 
[6] TEXT+((TEXT~' ')vTEXT~-i~TEXT)/TEXT 
[7] EXPAND+(TEXT=' ')/~pTEXT 
[8] EXPAND+-i+EXPAND-O,-i+EXPAND 
[9] EXPAND+(EXPANDo.alr/EXPAND),i 
[i0] NAMES+ 0 -i +(pEXPAND)p(.EXPAND)\TEXT 
[ii] NAMES+(NAMES[;i]£ALPHABET)~NAMES ? 

? MASK+MARKCODE TEXT 
[1] MASK+TEXT='''' 
[2] MASK+MASKv~\MASK 
[3] MASK+MASK^-v\(TEXT=tA')^MASK V 

(Programming Note: The variable ALPHABET 
should contain all valid alphabetics. The 
variable C__R should contain the Carriage 
Return, or New Line character.) 

The function DRAWCHART has been 
omitted in the interest of brevity. These 
functions will work on any IBM-compatible 
APL. They would be more complicated if 
they had to handle such language 
enhancements as the diamond statement 
separator. 

we can now see a way to compute a 
measure of the flow of control complexity 
of an APL program. We can compute the 
ratio of the number of branch edges to the 
number of statement vertices. The 
argument to this function is a boolean 
connection matrix. 

FLOWCOMPLEXITYIÙ (+lOr-l++l~)÷l÷p~ 

The result this program gives for a 
linear program is 0. A program which 
consisted of nothing but two-way 
conditional branches would be given a 
value of i. The larger the result, the 
more dense and complicated the branching. 

There is an alternatve way of 
computing flow complexity. The concept 
was originally explained in [MCCA78]. If 
a graph is connected, the number of 
independent paths in the graph is i+ the 
number of edges + the number of nodes. 
Now program flow graphs are not 
connected. If we assume, however, that 
there is an edge from the last statement 
to the first, then they are connected. 
This means that the number of independent 
branch paths is (i+((+/+/GRAPH)-i÷pGRAPH)) 
+i (for the imaginary path). This the 
rationale for the following function. 

FLOWCOMPLEXITY20 2+(+l+l~)-l÷p~ 

This measure of flow complexity is also 
very useful in generating test cases to 
test out a program. 

FUNCTION CALL TREES 

A function call tree represents the 
hierarchy of functions. It shows which 
function may call another during a 
particular execution. It does not show 
the sequence of the functions calls, nor 
the conditions under which they may be 
called. It consists of the names of the 
functions connected by lines which 
indicate subroutine calls. 

We can use the same boolean 
connection matrix to represent the 
subroutine calls. The connection matrix 
is a square matrix in which there is a row 
and column for each function in the 
workspace. OLX must be treated as a 
function for this representation to make 
sense. If element [l;J] is i, then 
function I calls J. If we relax the 
requirement that the main diagonal be 0 
(no loops), we can test for the presence 
of recursive functions with 
v/l i~GRAPH. Strictly speaking, a graph 
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showing recursions is a multigraph. 
can locate the main routine in the 
workspace with (O=+~GRAPH)~I. 

We 

For an APL workspace, we may have to 
represent the hierarchy with more than one 
tree. We will have several roots (and 
several trees) if there are functions 
which do not trace their activation back 
to ULX. These functions will be activated 
by the user directly while in immediate 
execution mode. Paul Berry calls such 
workspaces 'open systems'. Thus the test 
for an open (versus closed) system is 
i<+/O=+~GRAPH. 

Implementing the function call tree 
also involves an analysis and drawing 
phase. 

V FNCALLTREE~FNS 
[i] FNS÷QNL 3 
[2] FNS÷((-I÷pFNS)÷'DLX'),[i] FNS 
[3] FNS DRAWTREE 0 GRAPNCALLS FNS V 

GRAPHCALLS returns a boolean matrix 
representing the function call tree. The 
program which draws the trees has been 
omitted. The right argument is a 
character matrix containing functions 
names, one per row. 

V GRAPH÷CONTROL GRAPHCALLS FNS 
;CTR;LMT;NAMES;WIDTN 
[ I~ GRAPH÷(2pi÷pFNS)pO~O 
[2] CTR÷O 
[3] L~T÷ifDFNS 
[4] L00P:÷(LM~<CTR÷CTR+I)DEND 
[ 5 ] NA~ES÷,Y, ( 2--3 pTDcR, T) 

[i+,D,=i÷EES[C~R;];]),' F~S[C~R;]' 
[6] NAMES÷((12=ppNAMES),O)+NAMES 
[7] ÷(O(pNAMES)pL00P 
[8] NAMES÷(MARKCODE NAMES) GETNAMES N~M~S 
[9] WIDTH÷(-IfDENS)[-~÷~NAMES 
[i0] GRAPH[CTR;]÷v/(((ifoFNS),WIDTH)÷FNS) 

A.=~((17oNAMES),WIDTH~÷NAMES 
[ii] ÷LOOP 
[12] E~:~(~icCONTROL)pEXIT 
[13] GRAPH÷FNS,' ',~GRAPH 
[14] EXIT: V 

The function call graph leads us to a 
way of quantifying the modularity of an 
application. We can make the following 
generalizations about modular systems. 
i) Modular systems normally have fewer 
statements per program than monolithic 
ones. 
2) Modular systems normally have more 
references to a given program than 
monolithic ones. 
Both of these phenomena occur when more 
than one function uses sub÷unctions which 
are common to several functions. 

The degree of modularity of a set of 
functions can be calculated with the 
following function. The argument is a 
matrix namelist of functions to be 
analyzed. The larger the result of the 

MODULARITY function, the less modular the 
set of programs is. 

MODULARITYQ ((+/COUNTFNLINES ~)~l÷p~) 
~i+(+/+~GRAPHCALLS ~)~l÷p~ 

V LINES+COUNTFNLINES FNS;C~R;LMT 
[I] LINES+~O 
[2] CTR÷O 
[33 L~T÷i÷pFNS 
[4] L00P:+(LMT<CTR÷CTR+i)/END 
[5] LINES÷LYNES?-i+~÷oDCR ~NS[CfR;] 
[6] ÷LOOP 
[7] END: V 

'Modularity' has been in the past a 
pious programmer's platitude. Everyone 
said it was good, but no one could or 
would define what it meant. Now that you 
have an objective definition of 
modularity, you can judge for yourself who 
just preaches it and who actually 
practices it. 

VARIABLE DEPENDENCE 

A variable dependence graph shows the 
relationships between variables in a 
program. The vertices represent the 
variables in the program. The edges 
represent references to the values of 
other vertices (variables) in an 
assignment. 

If we analyze a single APL program, 
we cannot get a true variable dependence 
graph. This is because we cannot resolve 
the referent type of names which are not 
assigned. They can be global functions or 
variables. The syntax of the references 
in the function are not sufficient, in 
general, to determine the referent type of 
the object. We can, however, compute a 
name dependence graph which includes 
global functions and variables. 

If we analyze the following function, 
we will get the name dependence graph 
listed below it. (The names have been 
supplied for reference). 

VZ÷X JOIN Y;W 
[1] W+(-i÷pX)F(-i+pY) 
[2]  Z÷(((i÷pX),W)÷X),[I]  ((i÷pY),W)÷Y V 

X 0 0 0 0  
Y 0 0 0 0  
W 1 1 0 0  
Z 1 1 1 0  

The names are listed in the order that 
they appear in the program. The arguments 
are considered to be assigned on line [0], 
so they appear first. 

We can note several standard features 
of these graphs. Unless the arguments are 
re-assigned, their rows will be all zeros. 
The rows related to sub÷unctions will also 
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be zeros, as will any global variables 
which are not assigned. This graph may or 
may not be a multigraph, because the 
previous values of variables may be used 
to re-assign them. 

The functions listed below implement 
the variable dependence graph. The right 
argument to GRAPHASSIGN is a character 
vector which contains the name of the 
function to be analyzed. 

V GRAPH+CONTROL GRAPHASSIGN NAME 
;TEXT;ALFNUM;NUMBERS;SELECT;ORDER;NAMES 
[13 
[2] 
[3] 
[4] 

[5] 
[6] 
[7] 
[8] 
[e] 
[103 

[11] 

[12] 

TEXT+O MARKHEADER OCR NAME 
TEXT+(,(MARKCODE TEXT),I)/,TEXT,CR 
ALFNUM÷TEXTeALPHABET,'OI234567890~' 
TEXT+ALFNUM MARKINDEXASSIGN TEXT 
SELECT+ALFNUM COMPRESSTEXT TEXT 
TEXT+SELECT[TEXT 
ALFNUM+SELECT/ALFNUM 
NUMBERS+ALFNUM REFNUMBERS TEXT=CR 
SELEC~+A LFNUM~- 1 + 0, A LFNUM 
NAMES+(-SELECT/ALFNUM) MATFROMVEC 
SELECT[TEXT 
ORDER+(' ',ALPHABET,'Oi23456789') 
CHARMATGRADE 0 1 +NAMES 
GRAPH+NUMBERS[ORDER] BUILDASSIGNGRAPH 
NAMES[ORDER;] V 

The function MARKHEADER is used here 
is extract the names of the arguments. It 
also marks them as assigned on line [0]. 

V FUNCTION+CONTROL MARKHEADER TEXT 
;HEADER;RESULT;PARMS;TEMP;LOCALS;OIO 
[1] 
[2] 
[s] 
[4] 
[s] 
[6] 

[7] 
[8] 

[9] 
[10] 
[11] 
/12] 
[13] 
[14] 

[153 

[Is] 

OIO+l 
HEADER+TEXT[i;] 
HEADER+(@v\~' '~HEADER)/HEADER 
LOCALS+(-I+HEADERi';')+HEADER 
HEADER+(-pLOCALS)+HEADER 
RESULT+(('+'eHEADER)xHEADER,'+,)÷ 
HEADER 
HEADER+(oRESULT)+HEADER 
RESULT+(-I+RESULT),(O~oRESULT) 
/-i÷-i+OAV 
PARMS+'' 
+(2 i 0 =+/HEADER=' ')[LEFT,RIGHT,END 
LEFT:TEMP+HEADERi' ' 
PARMS+((-i+TEMP)÷HEADER),-i÷-2+OAV 
HEADER+TEMP+HEADER 
RIGHT:PARMS+PARMS,((HEADER~' ') 
+HEADER),-i÷-2+OAV 
END:HEADER+(CONTROL/RESULT),PARMS 
,(CONTROL[LOCALS) 
FUNCTION+((-i÷oTEXT)÷HEADER) 
,[0IO] 1 0 +TEXT V 

The function MARKINDEXASSIGN flags 
those index references (A[...]) which are 
actually indexed assignments. 

[1] 
[2] 
[3] 
[4] 

[5] 

[6] 

[7] 
[8] 

[9] 

[10] 

V FUNCTION+ALFNUM MARKINDEXASSIGN TEXT 
;LOCATIONS;BRACKETS;POSITIONS;SELECT 

LOCATIONS+TEXT~'[]' 
+(-v/LOCATIONS)oEND 
BRACKETS+LOCATIONS[TEXT 
POSITIONS+(BRACKETS=']')++\ 
1 -i['[]'iBRACKETS] 
POSITIONS+(LOCATIONS/~pLOCATIONS) 
[~POSITIONS] 
POSITIONS+((O.5×oPOSITIONS),2) 
pPOSITIONS 
SELECT+(-i~ALFNUM)A~ALFNUM 
POSITIONS+(POSITIONS[;I]ESELECT/ 
~oSELECT)~POSITIONS 
TEXT[(TEXT[POSITIONS[;2]+i]='+') 
/POSITIONS[;i]]+-i÷OAV 
END:FUNCTION+TEXT V 

The next four functions do most of 
the work to prepare a traditional cross 
reference listing. COMPRESSTEXT selects 
the names in the text and the symbols 
immediately to their right. REFNUMBERS 
computes the line numbers that the names 
are located on. MATFROMVEC creates a 
matrix of the names in the text. 
CHARMATGRADE grades the matrix namelist. 
On SHARP APL, it can be replaced with a 
call to dyadic grade up. 

V SELECT+ALFNUM COMPRESSTEXT TEXT 
;PARTN;LINES;TEMP 
[i] LINES+TEXT~C_R 
[2] SELECT+LINESvALFNUMv-i+O,ALFNUM 
[3] TEXT+SELECT[TEXT 
[4] LINES+SELECT[LINES 
[5] ALFNUM+SELECT/ALFNUM 
[6] PARTN+LINESvALFNUMA--I+O,ALFNUM 
[7] TEMP+PARTN/TEXTe'Oi23456789~O' 
[8] SELECT÷SELECT\~~\PARTNkTEMP~-i+O,TEMP 
V 

V NUMBERS+ALFNUM REFNUMBERS LINES 
;PARTN;POSITIONS 
[i] PARTN+ALFNUMA--i+O,ALFNUM 
[2] POSITIONS+(PARTNvLINES)/LINES~PARTN 
[3] POSITIONS+POSITIONS/*oPOSITIONS 
[4] NUMBERS÷(POSITIONS-IpPOSITIONS) 

++\PARTN/LINES V 

V MATRIX+DELIMITERS MATFROMVEC VECTOR 
;EXPAND;LENGTH;ENDS 
Ll] ENDS+DELIMITERS/IoDELIMITERS 
[2] LENGTH+-i+ENDS-O,-I+ENDS 
[3] EXPAND+(LENGTHo.a~[/LENGTH),i 
[4] MATRIX+(oEXPAND)p(,EXPAND)\VECTOR V 

V ROWS+KEY CHARMATGRADE MATRIX 
;BASE;COLUMNS 
[1] ROWS+Ii÷o~ATRIX 
[2] BASE+i+oKEY 
[3] COLUMNS+I+pMATRIX 
[4] COLUMNS+(-COLUMNS[[BASE®2147483647) 

÷ICOLUMNS 
[5] L00P:+(O=oCOLUMNS)pEND 
[6] ROWS+ROWS[~BASE~KEY*MATRIX 

[ROWS;COLUMNS]] 
[7] COLUMNS+COLUMNS-oCOLUMNS 
[8] COLUMNS+(COLUMNSzi)/COLUMNS 
[9] ÷LOOP 
[i0] END: V 
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BUILDASSIGNGRAPH takes the cross 
reference information and turns it into a 
boolean matrix representing the graph. It 
uses partitioning techniques to handle the 
non-rectangular data. 

V GRAPH+NUMBERS BUILDASSIGNGRAPH NAMES 
~USAGE~PARTN;MAX;SELECT;ORDER~CTR;LMT;SET; 
SEGMENT 
[i] USAGE+('÷:[+÷',(-i÷OAV),' ') 

[('÷:[',-3÷DAV)L,NAMES[;-i÷pNAMES]] 
[2] NAMES+ 0 -I +NAMES 
[3] PARTN+I.I+v/NAMES~-leNAMES 
[4] NAMES+PARTN~NAMES 
[5] SELECT+~PARTN PARTNORREDUCE ':'=USAGE 
[6] NAMES+SELECT~NAMES 
[7] SELECT+~\PARTN\SELECT~-i+O,SELECT 
[8] NUMBERS+SELECT[NUMBERS 
L9] PARTN+SELECT/PARTN 
[I0] USAGE+SELECT[USAGE 
[ii] ORDER÷~PARTN/NUMBERS 
[12] NAMES+NAMES[ORDERs] 
[13] ORDER+~(~ORDER)[+kPARTN] 
t14] PARTN+PARTN[ORDER] 
[15] NUMBERS+NUMBERS[ORDER] 
[16] USAGE+USAGE[ORDER] 
/17] SET+(NUMBERS~O)^-USAGE('[ ' 
[18] CTR+O 
[19] LMT++/PARTN 
[20] GRAPH+(O,LMT)pO 
[21] SEGMENT+LMT÷I 
[22] LOOP:+(LMT<CTR+CTR+I)pEND 
[23] SELECT+SETA~\PARTNkSEGMENT~ 

-i+O.SEGMENT 
[24] GRAPH÷GRAPH, J1] PARTN PARTNORREDUCE 

(NUMBERSx(~SELECT)+-ixSELECT) 
eSELECT/NUMBERS 

[25] SEGMENT+-i#SEGMENT 
[26] +LOOP 
[27] END:+(~ieCONTROL)pEXIT 
[28] GRAPH+NAMES.' ',,GRAPH 
[29] EXIT: V 

PARTNORREDUCEO (Cll@C+(~v~)l~)s~/~ 

(Programming Note: This function assumes 
that the flow of control in the program it 
is analyzing is top-down. This means that 
the line number of every branch 
destination is greater than or equal to 
the line number of the origin, except for 
branches returning to the head of a loop.) 

We have an alternative function which 
uses the SHARP APL implementation of 
enclosed arrays. The ratio of statements 
between the two is almost 3 to i. This 
would seem to substantiate the claims that 
have been made about productivity 
improvements from enclosed arrays. When a 
data structure is non-rectangular, the 
difference between an implementation which 
has enclosed arrays and one which doesn't 
may be as significant as the difference 
between APL and FORTRAN. 

The reduction in coding is due to 
replacing partitioning operations with 
uses of the new operators. Lines [5 6 7 8 
9 i0] and a subfunction call are replaced 
by line [5]. Lines [Ii 12 13 14 15 16] 

are replaced by line L6]. Lines [17 18 19 
20 21 22 23 24 25 26], which include a 
loop and a subfunction call, are replaced 
bY lines [7 8]. 

V GRAPH+NUMBERS BUILDASSIGNGRAPH2 NAMES 
;USAGE;PARTN~MAX;TABLE~SELECT;OPS 
[i] USAGE+,('+:[+÷',(-i+OAV),' ') 

L('+:['.-3÷OAV)*,NAMES[;-i÷pNAMES]] 
[2] NAMES+ 0 -I +NAMES 
[3] PARTN+i,I+v/NAMES~-ieNAMES 
[4] TABLE+(<~I PARTN?NAMES), 

(PARTN 2~< NUMBERS),[1.5] 
PARTN 2~< USAGE 

[5] TABLE+(N': 'E~>TABLE[;3]){TABLE 
[6] TABLE+TABLE[~i÷Z>TABLE[~2];] 
[7] SELECT+(N">TABLE[;3]~">< 

'[ ')^">O~">TABLE[;2] 
[8] GRAPH+~v/~>((-">SELECT)/">TABLE[;2]) 

o.~">SELECT/">TABLE[;2] 
[9] ÷(~I~CONTROL)oEXIT 
[10] OPS+ 1 1 0 1 O GRAPH+(WTABLE[;.1]). 

' '.~GRAPH 
[11] EXIT: V 

Space limitations prevent me from 
discussing the details of how this 
function works. Those interested in this 
implementation may read more about it in 
[BERN8~]. Topics demonstrated here 
include: 
i) ON (~) as an axis operator (<~i), 
2) ON (o) as a partitioning operator 
(2~<), 
3) ON (Z) as a composition operator (e~> 
and +~>), 
4 ! WITH (") as the dual operator (~"> ^"> 
E > ~">) , 

5) Derived functions as arguments to 
operators (S/"> o.e"> v/">), 
6) OPS for controlling the formatting of 
enclosed arrays. 

What is the significance of the name 
dependence graph? To learn this, we must 
recall a concept from graph theory. The 
transitive closure of a graph identifies 
all paths of any length between two 
points. If (CLOSURE GRAPH)[I;J] is i, 
there is a path of some length from I to 
J. 

In the case of the name dependence 
graph, its closure will indicate any 
dependence of one name on another. This 
dependence may be direct or indirect. If 
I depends on J, J depends on K, and K 
depends on L, then (CLOSURE GRAPH)[I;L] 
will be I. 

This result may be useful in program 
maintenance. You can quickly check all 
the variables which will be effected if 
you change the definition of Some object. 
If you just look down the column 
corresponding to that variable, it will 
mark all variables that depend on that 
variable. 

The closure of this graph may also be 
useful in debugging. If you just look 
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across the row corresponding to that 
variable, i~-wQill mark all the names that 
it depends on. If the value of a variable 
is wrong, you can easily identify all the 
objects which might be the source of the 
problem. 

Perhaps the most interesting use of 
this graph is in the area of software 
metrics. It can be used to measure an 
important software quality- module 
cohesion. This concept is an essential 
part of the discipline of Structured 
Design. It is defined by Yourdon and 
Constantine [YOUR79] as "the degree of 
functional relatedness of processing 
elements within a single module." Myers 
[MYER78] defines his equivalent term 
('module strength') as "a measurement of 
the relationships among the elements 
within a single module." 

Both of these books propose a 
hierarchy of the degrees of cohesion. 

Yourdon Myers 
coi~ental coincidental 
logical logical 
temporal classical 
procedural procedural 
communicational communicational 
sequential 
functional functional 

informational 

They describe the distinctives of each 
these degrees. Unfortunately, while they 
speak of 'degree' and 'measurement' their 
descriptions are very qualitative. 

The most desirable degree of cohesion 
is functional. The definitions are a 
module in which "every element of 
processing is an integral part of, and 
essential to, the performance of a single 
function s [YOUR79] and "a functional 
strength module is defined as a module 
that performs a single specific function." 
[MYER78] 

A broad class of functionally 
cohesive programs are those which compute 
an explicit result based entirely upon one 
or two arguments. Such functions can be 
easily identified with the closure of the 
name reference graph. If the only rows 
which are all zeros are those 
corresponding to the arguments, and if the 
row corresponding result is all l's, 
except for the column corresponding to 
itself, then the program is functionally 
cohesive. This means that the result 
depends on every variable which is 
calculated, including the arguments. 
Every calculation is done for the ultimate 
goal of calculating the result. 

This definition can be broadened. If 
only arguments and results are used for 

inter-function communication, we can relax 
the restriction on all-zero rows. They 
may also correspond to subfunctions. 
Either of these definitions is sufficient, 
but not necessary. In other words, there 
may be programs which don't fit these 
criteria which are functionally cohesive. 
Even this partial definition, however, is 
much more satisfactory than the 'warm 
fuzzies' which Structured Design advocates 
have been content with in the past. 

FUNCTION CONNECTION 

A function connection graph shows the 
data relationships between functions. The 
vertices represent the functions being 
analyzed. The edges represent references 
to variables belonging to another 
function. 

If we analyze the following 
functions, we will get the function 
connection matrix listed below them. (The 
names have been supplied for reference). 

VR÷X FO01Y 
[I] R÷X+F002 Y V 

VR+Y FO02 Z 
[1] R+Z-FO03 Y V 

VR÷A FO03 W 
[i] R÷X+A+W×Y V 

FO01 0 0 Q 
FO02 0 0 0 
F003 1 1 0 

In this case, FO03 uses a variable 
belonging to FOOl, and also one belonging 
to F002. 

The functions listed below implement 
the function connection graph. The right 
argument to GRAPHCONNECT is a character 
matrix. It should contain the names of 
the functions to be analyzed, one name per 
row. 

V GRAPH+COnTROL GRAPHCONNECT FNS 
~CTR~LMT~XREFTAB;TEMP~WIDTH 
[17 XREFTAB÷ 0 3 p'' 
[2] CTR÷O 
[3] ~J+l*oF~S 
[%] L00F:÷(LMT<CTR÷CTR+1)pEND 
[5] TEMP÷~A~[CTR]oXREFNL ~R FNS[CTR~] 
[6] WIDTH÷(-i÷~XREFTAB)[-i÷pTEMP 
[7] XREFTAB÷(((I÷pXREFTAB).WIDTH)÷ 

XREFTAB).[1]((i÷,TfMf).WIDTH)÷TEMf 
[8] ÷LOOP 
[9] END:GRAPH÷BUILDCONNECTGRAPH XREFTAB 
[10] ~(~I~C~NTROL),E~I~ 
[11] GRAPH÷FNS.' '.vGRAPH 
[12]EXIT: V 

The function XREFNL produces a cross 
reference name list for a single function. 
Its argument is a canonical representation 
of an APL function. It presumes the 
availability of the subfunctions used by 
GRAPHASSIGN. 
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V TABLE+XREFNL TEXT;ALFNUM 
;SELECT;NAMES;ORDER;NUMBERS;PARTN~USAGE 
[i] TEXT+I MARKHEADER TEXT 
[2] TEXT+(,(MARKCODE TEXT),I)/,TEXT.CR 
[3] ALFNUM+TEXTeALPHABET,'Oi23456789D~' 
[4] SELECT+ALFNUM COMPRESSTEXT TEXT 
/5] TEXT+SELECT~TEXT 
[6] ALFNUM+SELECT/ALFNUM 
[7] NUMBERS+ALFNUM REFNUMBERS TEXT=CR 
[8] SELECT+ALFNUMv-i+O,ALFNUM 
[9] NAMES+(~SELECT/ALFNUM) MATFROMVEC 

SELECT~TEXT 
[10] ORDER+(' ',ALPHABET,'0123456789') 

CHARMATGRADE 0 1 +NAMES 
[11] USAGE+,NAMES[ORDER;-I÷oNAMES] 
[12] NAMES+ 0 -1 +NAMES[ORDER;] 
[13] NUMBERS+NUMBERS[ORDER] 
[14] PARTN+I,i+v/NAMES~-leNAMES 
[15] TABLE+OAV[i+PARTN PARTNORREDUCE 

O=NUMBERS],PARTN/NAMES 
[16] TABLE÷(~PARTN PARTNORREDUCE 

':'=USAGE)4TABLE V 

The function BUILDCONNECTGRAPH turns 
the accumulated cross reference lists from 
all the functions into the boolean matrix 
representing the connection graph. 

V GRAPH+BUILDCONNECTGRAPN XREF 
~FUNCTIONS;PARTN~LOCAL~VARS;USAGE 
[1] FUNCTIONS+DAVIXREF[;I] 
[2] PARTN+i,i+FUNCTIONS~-leFUNCTIONS 
[3] LOCAL÷2=OAViXREF[;2] 
[4] VARS+ 0 2 +XREF 
[5] USAGE+VANS MATRIXINDEXOF VARS 
[6] CTR+O 
[7] LMT++/PARTN 
[8] GRAPH+(O,LMT)pO 
[9] SEGMENT+LMT÷I 
[iO]L00P:+(LMT<CTR+CTR+i)oEND 
[Ii] SELECT+(~LOCAL)A~\PARTN\ 

SEGMENT~-i+O,SEGMENT 
[12] GRAPH+GRAPH,[1] PARTN PARTNORREDUCE 

USAGE~SELECT/USAGE 
[13] SEGMENT+-i~SEGMENT 
[14] +LOOP 
[15]END:GRAPH+GRAPH^(I1*pGRAPH)o.~ 

~i÷oGRAPH V 

MATRIXINDEXOFQ OIO++IA\~V.~e 

Once again, we have an alternative 
version which uses the SHARP APL enclosed 
array implementation to handle the ragged 
data. No new enclosed array concepts are 
introduced here. 

V GRAPH+BUILDCONNECTGRAPH2 XREF 
~FUNCTIONS;PARTN;LOCAL;VARS;USAGE 
[i] FUNCTIONS+OAViXREF[;1] 
[2] PARTN+I.i+FUNCTIONS~-leFUNCTIONS 
[3] LOCAL+2=DAV~XREF[;2] 
[4] VARS÷ 0 2 +XREF 
[5] USAGE+PARTN 2~< VANS MATRIXINDEXOF 

VANS 
[6] GRAPN+~v/~>USAGEo.e 

"'>(PARTN 2~< ~LOCAL)/">USAGE 
[7] GRAPH+GRAPH^(~1÷pGRAPH)o.~II÷pGRAPH V 

What is the significance of the 
function connection graph? Like the 

previous graph, it can be used to measure 
an important software quality-- module 
coupling. Yourdon and Constantine 
[YOUR79] define this as "the measure of 
the strength of interconnection between 
one module and another." One of the 
chief goals of Structured Design is to 
produce modular software. Thus, it is 
desirable to maximize module cohesion and 
minimize module coupling. 

Once again, Yourdon/Constantine and 
Myers [MYER78] present similar, but not 
identical, definitions of the degrees of 
coupling. 

Yourdon 

hybrid coupling 
content coupling 
common data coupling 

control coupling 

data coupling 

Myers 
no direct coupling 

content coupling 
common coupling 
external coupling 
control coupling 
stamp coupling 
data coupling 

Some of these categories are not 
relevant in the APL environment. Besides 
the obvious 'no coupling', the other two 
that definitely are relevant in an APL 
environment are 'common coupling' and 
'data coupling'. The first occurs when 
data is transmitted between functions 
through the use of variables which are 
global to one or both of them. The second 
occurs when data is transmitted between 
functions exclusively through arguments 
and results. 

Using the connection graph to 
determine coupling is rather easy. Let 

G+O GRAPHCALLS NL 
H+O GRAPHCONNECT NL 

We find the following results. G ̂ ~H 
identifies the connections which are data 
coupled. K+H^Gv~G identifies the 
connections between functions which are 
common coupled, and where one function is 
called by another. K^~K identifies the 
connections between functions which are 
common coupled, and where neither function 
calls the other. If O=+/,X then the 
programs have no direct coupling. 

CONCLUSION 

This paper has presented 4 graphs 
which may be used to analyze APL programs. 
These are the flow of control graph, the 
function call graph, the variable 
dependence graph, and the function 
connection graph. 

In each case, the power of APL made 
it relatively easy to write functions to 
produce matrix representations of these 
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graphs directly from APL programs. When 
the data being processed was essentially 
non-rectangular, the SHARP APL 
implementation of enclosed arrays proved 
to be a particularly concise and powerful 
notation. The power of APL was used again 
to define quantitative measures of 
important software qualities, based upon 
these graphs. In these examples, the 
uniqueness of APL can be seen in the fact 
that APL programs were both the objects 
and means of analysis. 
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