
A TOOLBOX FOR APL PROGRAMMERS

Robert C. Metzger
APL Systems Consultant

Boston Office
I.P. Sharp Associates, Inc.
Suite 415, 148 State Street

Boston, MA USA 021@9
617-523-2506

Abstract

A set of programming tools for APL
programmers is described. One group of
tools helps the reader understand APL
by taking advantage of special features of
communication terminals, as well as using
nontraditional approaches toward program
listings, and nonverbal communication
methods. Another group of tools rewrites
portions of APL programs in order to
eliminate stumbling blocks to effective
communication.

APL Programs as a Communication Medium

APL was originally developed as a
notation for communicating algorithms.[l]
Its effectiveness as a notation was
demonstrated before a computer
implementation was made available. J2]
Unfortunately, many people who use the
various implementations of APL do not write
their APL programs so as to clearly
communicate algorithms to other people, but
merely to cause a digital computer to take
some action.

The long-range solution to this problem
is to educate APL users in the art of
"courteous programming", ie. writing
programs so as to help the people who will
read them. The APL neophyte puzzling over
a "one-liner" while reading a textbook, the
APL user stumbling over someone else's
"spaghetti logic" while trying to get a job
done, and the professional APL programmer
attempting to meet a deadline while doing
battle with a large program containing many
complicated statements and no comments are
in need of more immediate help. This paper
describes an integrated approach toward

Copyright © 1979 by the Association for Computing Machinery,
Inc. Copying without fee is permitted provided that the copies are
not made or distributed for direct commercial advantage and credit
to the source is given. Abstracting with credit is permitted. For
other copying of articles that carry a code at the bottom of the first
page, copying is permitted provided that the per-copy fee
indicated in the code is paid through the Copyright Clearance
Center, P. O. Box 765, Schenectady, N. Y. 12301. For permission to
republish write to: Director of Publications, Association for
Computing Machinery. To copy otherwise, or republish, requires a
fee and/or specific permission.

© 1979- -ACM 0-89791-005--2 /79/0500--0236 $00.75

a set of APL programming tools written in
APL, which are meant to make the meaning of
APL programs more accessible to the reader.

A program written for one of the APL
implementations communicates with two
distinct recipients-- the language processor
program and the various people who will read
it in order to correct, modify, or replace
it. The theoretical models of the communi-
cation process identify several possible
areas where APL programming tools can aid
the program reader in understanding the
program at hand.

The SMCR model (Source-Message-Channel-
Receiver) was conceived of by David Berlo.
[3] The Source (program writer) is
affected by four factors-- communication
skill, knowledge, social system, and
cultural system. In the APL programming
environment, these could translate to APL
programming technique, knowledge of the
application, programming standards (adhered
to or ignored) and the natural language used
by the programmer. Similar factors affect
the Receiver (program reader), except for
the first, which is instead the ability to
read APL programs. The Channel is a printed
page or video screen where APL characters
are displayed. The Message aspect of this
model is of greatest importance to this
paper.

The Message is "an ordered selection from
an agreed set of signs intended to
communicate information."[4] The set of
signs are those represented on the APL
keyboard, and such overstrikes as may be
recognized by the APL system. The ordered
selection will be based upon the syntactic
rules of the APL language. The information
to be communicated is a description of a
process by which a person or a digital
computer can manipulate a set of symbols
according to the definitions of the APL
functions so as to achieve a desired result.

A Message is influenced by five factors:
elements, structure, encoding, content, and
treatment. At the highest level, the
elements of an APL program are the header,
and program lines. The structure at this
level is defined by placing the header at

A Toolbox for APL Programmers 236 R. Metzger

the beginning, followed by program lines
which are identified by integers starting at
one and ascending in steps of one. At the
next level, the elements of a program line
are labels, statements, statement-separator
symbols, and comments. The structure is
defined by the rule that the label must be
on the left, followed by zero or more APL
statements, which may be blocked using the
statement separator, followed by comment
text which is separated from the rest of the
line by the lamp symbol. At the next-lower
level, the elements of an APL statement are
user-defined names, system-defined names,
primitive functions, operators, and punctu-
ation symbols. The structure is defined by
rules concerning the juxtaposition of
operators, niladic, monadic, and dyadic
functions, variables and punctuation
symbols. At the lowest level, each of the
above-mentioned elements are composed of
different subsets of the AFL character set,
and each is constructed with its own set of
rules. User-defined names, for example,
are formed from alphanumeric characters, and
must have an alphabetic character in the
leftmost position. A complete set of APL
programming tools must enable the programmer
to focus on the elements and structure at
any level desired.

The content of an APL program is the
algorithm being expressed. Just as verbal
messages expressed through the more

Table I

Emphatic/ Newspaper Public-Speech
Clarifying Method Method
Principle

I. Change Headline in
Quantity of Bold Type
Signal

Raise or Lower
Voice

2. Change Use Italic Change Tone of
Quality of Type Font Voice
Signal

3. Place Null Surround with
Signal Blank Space
before Signal
to be
Emphasized

Pause

4. Use Place Text in Not Applicable
Position of Center of
Signal on Page
Medium

5. Omit Less
Important
Parts Of
Message

6. Present
Data both
Verbally and
Nonverbally

Use Tables,
Graphs

Not Applicable

7. Use Non-
Verbal
Messages

Use Photos or
Sketches

Use Gestures

traditional media need an overall theme, so
too the basic purpose of an APL program
should be expressible in a single
sentence. Encoding and treatment refer to
the particular ways a message is constructed
so as to express it clearly, accurately, and
concisely, and to minimize the possibility
of misinterpretation. The practitioner of
courteous programming consciously seeks an
encoding of an algorithm which will make it
easy for other people to understand.
Certainly one reason that a set of APL
programming tools is needed is that many APL
programmers do not seek such encodings in
their APL programs. Even the courteous
programmers, however can benefit from the
use of automated programming tools which aid
the debugging and documentation process.

Improving Communication Effectiveness

Since an APL program is partly a medium
for communication between people, it is
logical to investigate other media in search
of methods for increasing communication
effectiveness in APL programs. People
learn primarily from visual and aural media,
and so this search will focus on the
newspaper and the public speech as
representatives of these types of media.

Table I lists several methods by which
a newspaper editor or a public speaker can
emphasize, clarify, or reinforce a message.

Table II lists methods for emphasizing,
clarifying, or reinforcing the elements,
structure, coding, treatment, or content
of an APL program, which are related to the
principles listed in Table I.

Table II

Emphatic/
Clarifying Method

APL Terminal Providing
This Feature

la. Use Character
Sets of Varying
Sizes

lb. Use Blinking
Characters

Tektronix 4015,
Anderson Jacobson 860

Hewlett Packard 2641,
HDS Concept APL

2a. Use Multi-Color
Ribbons

2b. Use Inverse
Video Display

2c. Underline Text

Trendata 4000A,
Diablo 1620 and others
Hewlett Packard 2641,
HDS Concept APL
All

3. Insert syntactically nonsignificant
blanks between APL syntactic elements,
and blank lines between program lines.

4. Align line numbers, line labels, APL
statements, and comments into columns.

5. List only the statements in a program
which have specified characteristics.

6. Display an identifier cross-reference
listing.

7. Draw program flowcharts.

R. Metzger 237 A Toolbox for APL Programmers

Table III lists some principles by
which the effectiveness with which a verbal
message is communicated can be improved,
and the applications of these principles
to improving the readability
of APL programs.

Psychological Set & Alternative Perspectives

The investigation of the newspaper and
the public speech in search of ways to
improve communication effectiveness and to
remove stumbling blocks to effective
communication has provided a number of
suggestions for APL programming tools.
There are various reasons that each indi-
vidual tool should be effective. Is there
a general reason why these tools as a set
may prove effective?

Gerald Weinberg asserts that the
"psychological set" of the program reader is
the major impediment to distinguishing
between what the mind believes a program
says and what the program actually says.r5]
The reader's psychological set may come from
reading comments describing the program,
or listening to someone else's ideas on how
it works or should work, or having knowledge
of the application context of the program,
or other similar factors. Psychological set
worsens the miserable job of reading
computer programs written by discourteous
programmers, because the mind sees what it
expects, hopes for, or dreads, rather than
what is actually there.

Weinberg suggests a number of ways in
which programmers can be given alternative
perspectives on programs.r6] Once the
suggestions which pertain only to
traditional programming languages, and
especially to Weinberg's favorite, PL/I, are

Table III

Improvement Principle Application to
APL Programs

i. Standardize or
Refine Vocabulary

2. Remove Grammatical
Problems

3. Change Order of
Presentation

4. Remove Slang,
Collogtlialisms,
Archaisms

la. Rename Labels;
lb. Rename Local

Variables.

2a. Break up
"one-liners";

2b. Unblock
Unrelated
Statements.

3a. Alphabetize
Local Variables
in Header;

3b. Restructure Flow
of Control.

4a. Convert Mixed
Output;

4b. Convert I-beam
Functions;

4c. Convert Keyword
Functions.

pruned out, the ideas which remain relate
to similar ideas which the previous
investigation brought out.

i) Display special texts in boldface,
lower case, or underlined.

2) Display the program without comments.
3) Rename all variables.
4) List symbols in alphabetical order,

together with references.
5) List the scope of symbols.

Weinberg states that the point of these
procedures is not to change the physical
meaning of the program, but to change its
"psychological meaning". The purpose of
such tools is "to make the machine help
people take advantage of the immense psycho-
logical resources they have in overcoming
their immense psychological shortcomings."[7]

Program-Analysis Tools

The tools described in this paper fall
into two categories. The first group all
produce some sort of display at the
terminal which is derived from an APL
program which is being analyzed. The second
group modify the definition of an APL
program in some way in order to improve
readability. The tools belonging to the
analysis group are described in this
section.

The LIST tool allows the user to display
part or all of the program listing. The
program can be displayed in part or in its
entirety, with or without comments.

The SPREAD tool displays the program with
a blank inserted after each syntactic
element. Program lines are separated by
blank lines, and lines are folded so as to
minimize splitting syntactic units. Output
from this tool looks like the following.

V MATRIX+DELIMITERS VECTOMAT VECTOR;DIO
;EXPAND;LENGTH;ENDS

[I] ~ RESTRUCTURES A VECTOR INTO MATRIX C
ONTAINING SUBSTRINGS AS ROW

[2] R ~ ~ ~ - VECTOR CONTAINING S
UBSTRINGS DELIMITED BY ANY ELEMENT
OF THE LEFT ARGUMENT

[3] ~ &~£~ ~ [- S C A L A R OR VECTOR OF P
OSSIBLE DELIMITING ELEMENTS

[4] A ~&T- MATRIX WITH SUBSTRINGS AS R
OWS, LEFT-JUSTIFIED

[5] OIO ÷ I

[6] i (2 ~ QNC 'DELIMITERS') / 'DELIM
ITERS÷I÷OOVECTOR'

[7] VECTOR ÷ VECTOR , (~ (-I ÷ VECTOR
) ~ DELIMITERS) ~ DELIMITERS

[8] ENDS ÷ (VECTOR e DELIMITERS) / t
VECTOR

[9] LENGTH + -I + ENDS - 0 , -I + ENDS

A Toolbox for APL Programmers 238 R. Metzger

[I0] EXPAND + (LENGTH o.~ t [/ LENGTH)
,I

[II] MATRIX + 0 -I + (0 EXPAND) p (
, EXPAND) \ VECTOR

The XREF tool produces a diagnostic
identifier cross-reference table. Several
special actions may be specified by the
user.

i) Literal strings to the right of the
execute function in a statement may
be included in the program text analyzed.

2) References to system functions, system
variables, quad and quotequad may be
included in the table.

3) Line-number references to identifiers
which do not receive any diagnostic flag
may be suppressed.

The table produced by the XREF tool
consists of three columns reserved for
diagnostic symbols, the actual identifiers,
and the line numbers of references,
together with symbols designating special
references to the identifier. Three
possible symbols can be placed next to the
identifier. A star (asterisk) indicates
that the identifier is not localized. This
will happen if the identifier is misspelled,
or it ought to be localized, or it refers to
a global function or variable. A question
mark indicates that the identifier is
localized, but the first reference in the
program is not an assignment. This will
happen if a variable has not been
initialized, or if a local function is
defined, or if the logic of the program is
not top-down, thus causing the assignment to
occur on a line following the first
reference. An exclamation mark indicates a
definite error-- either a label has been
localized in the header, or defined twice,
or assigned a value, or had its value
referred to by indexing.

The special reference indicators immedi-
ately follow the line number listed where
the reference was made. The colon indicates
a label definition. The left arrow
indicates a value assignment. The left
bracket indicates an indexed value reference
and the left bracket followed by a left
arrow indicates an indexed assignment. The
arrow pointing down indicates an argument
passed, and the arrow pointing up indicates
a result returned. The special reference
symbols allow the user to quickly locate
all original definitions and subsequent
modifications of a variable. Given the
function definitions below, the XREF tool
would tool produce the tables which follow.

V INDEX+VECTOR LASTAINDEX ARRAY
[I] m FINDS THE LAST OCCURRENCE OF THE ELE

MENTS OF AN ARRAY IN A VECTOR
[2] ~ ~ A ~ K ~ - ANY ARRAY
[3] ~ ~£~Z A ~ Z - ANY VECTOR
[4] s ~&T- NUMERIC VECTOR OF SAME RANK

AND SHAPE AS RIGHT ARGUMENT.

[5] ~ CONTAINS POSITION OF LAST OC
CURRENCE OF EACH ELEMENT OF RIGHT ARGUMEN
T

[6] INDEX+(OIO+pVECTOR)-(~OIO)+(¢VECTOR)~
ARRAY

[7] INDEX+,INDEX
[8] INDEX[(INDEX=OIO-I)/IoINDEX]÷I+pVECTO

R
[9] INDEX÷(pARRAY)OINDEX

V

V INDEX+VECTOR LASTAINDEX ARRAY
ARRAY O+ 6 9
INDEX O÷ 6+ 7+ 7 8[+ 8 8 9+ 9
VECTOR 0+ 5 6 8

V LIST+PROMPT CHOOSE VALID
[I] m ALLOWS USER AT TERMINAL TO CHOOSE I,

SOME OR 'ALL' ELEMENTS OF A VECTOR
[2] m ~ ~ M ~ - NUMERIC VECTOR SPECI

VYING NUMBERS WHICH CAN BE ENTERED
[3] m &~£T ~ [- CHARACTER VECTOR PROM

PT
[4] m ~&~- NUMBERS ENTERED BY USER
[5] m ~Q~[~-ASK,DISPLAY,IF
[6] CYCLE:LIST+PROMPT ASK EITHER
[7] +EXIT IF OepLIST ~ QUIT?
[8] +ALL IF^/'ALL'=3÷LIST m ALL COMMAND?
[9] +EXIT IF~'***INVALID ENTRY***' DISPLA

Y~A/LISTcVALID
[I0] +CYCLE
[11] ALL:LIST~VALID
[12] EXIT:

V

V LIST+PROMPT CHOOSE VALID
ALL 8 11:

* ASK 6
CYCLE 6: 10

* DISPLAY 9
* EITHER 6

EXIT 7 9 12:
* IF 7 8 9

LIST 0÷ 6÷ 7 8 9 Ii~
PROMPT O+ 6
VALID 0+ 9 11

The ALIGN tool displays the program
listing with line numbers, line labels, APL
statements, and line-end comments aligned
in separate columns. The programmer may
specify the maximum width to be used for
each column.

The DISPLAY tool is provided to utilize
the various display features of certain APL
terminals. A number of different special
display features are supported. Terminals
which do not provide special display
features have texts highlighted by placing
a blank line beneath the line to be
highlighted, and placing a "high minus"
sign beneath the characters to be
highlighted.

In order to control the special display
features of the various terminals, the SHARP
APL Arbitrary Output facility is used. This
facility bypasses the standard APL output
routines, and transmits codes directly to
the terminal. The DISPLAY tool does
the work of these system routines.

R. Metzger 239 A Toolbox for APL Programmers

What parts of a program can be emphasized
with these features? The user can specify
that certain classes of syntactic units be
highlighted with whatever alternative
display feature the terminal in use
supports. Alternatively, the user can
specify that entire program lines which have
specified characteristics be highlighted
with the special display feature.

Any combination of the following classes
of syntactic units may be highlighted:

i) Comments,
2) Literal constants,
3) Numeric constants,
4) System functions and variables,
5) Scalar dyadic functions,
6) Mixed functions,
7) Derived functions,
8) User-defined identifiers.

Any one of the following types of
statements may be highlighted:

i) Flow of Control-- branch statements,
execute statements and labels;

2) Terminal-Input/Output Statements--
explicit-output(quad), bare-output
(quotequad), evaluated-input(quad), literal-
input(quotequad), and mixed-output
(semicolon) statements;

3) Origin-Dependent Statements-- use of
indexing, index generator and index locator,
roll, deal, dyadic transpose, grade up,
grade down, and the axis operator;

4) Comparison-Tolerance-Dependent State-
ments-- use of floor, ceiling, membership,
index locator, less than, greater than,
less than or equal, greater than or equal,
equality, inequality;

5) Statements containing a specified
text;

6) Statements containing a specified
name, outside of comments and literal
constants.

Unfortunately, output produced by using
the various special display features can
not be reproduced in this paper.
Highlighting the literal and numeric
constants of a program with underscoring
produces output like the following.

V VECTOR~NAME ALTER VECTOR;ADD;DELETE;TY
PE

[I] R ALLOWS USER TO ADD NUMBERS TO, OR DEL
ETE NUMBERS FROM VECTOR

[2] A ~ ~ T - DATA VECTOR TO BE ALT
ERED

[3] , ~[~ ~ ~ - NAME OF LIST (CHAR VEC
TOE). MAY BE OMITTED.

[4] ~ ~&~ - VECTOR ARGUMENT, AS ALTERED
BY USER

[5] ~ ~ Q ~ - ASK
[6] I(2~ONC 'NAME')/'NAME÷'''''

[7] TZPE~(CHARS,NUMBEHS)[~IO+NUMERIC VECTO
R]

[8] 'THE CURRENT ',NAME,' LIST IS: '
.

[9] O+VECTOR
[I0] ADD÷'ADDITIONS TO LIST:' ASK TYPE

[II] DELETE÷'DELETIONS FROM LIST:' ASK TYPE

[12] VECTOR÷ADD,(~VECTOREDELETE)/VECTOR
[13] VECTOR÷VECTOR[~VECTOR]

V

The MASK tool extracts from a program
statements which have specified character-
istics and displays them. Only the program
header and the relevant statements are
displayed. Any one of the six types of
statements which can be highlighted with the
DISPLAY tool can be extracted with the MASK
tool. Masking the flow of control
statements of a program produces output like
the following.

V REPORT÷FNASUMMARY OPTION

[15] NAMEALOOP:÷(ROWS<I÷I+I)oENDANAMEALOOP

[20] ÷(O<I÷pIMAGE)pUNLOCKED

[22] ÷NAMEALOOP
[23] UNLOCKED:

[27] ÷NAMEALOOP
[28] ENDANAMEALOOP:÷(OcpOPTION)pFORMAT
[29] ÷(~v/'~'¢OPTION)pCHOOSE

[31] CHOOSE:
[32] FORMAT:÷((-5+LQPW÷2)<pTITLE)pONEACOLUM

N

[39] ~EXIT
[WO] ONEACOLUMN:
[41] EXIT:

The FLOWCHART tool does not produce the
kind of flowcharts which the traditional
flowcharting routines have produced. The
traditional method draws polygons around
all statements in the program, with lines
and arrows connecting the flow-of-control
statements. The problem with these charts
is that too much detail is presented, so
the programmer is looking at many non-
control statements with square boxes drawn
around them, which gives no more information
than looking at the original program.
Weinberg suggests that "a flow diagram,
properly constructed, can help to gather
nonlocal points of flow into a two-
dimensional form so that they may be seen on
one page."[8]

The FLOWCHART tool only displays flow-
of-control statements and labels. By
limiting the statements listed to flow-of-
control, most program flowcharts can fit on
a single page, giving the overall picture
that the programmer desires. All branch
statements are displayed. Since the execute
function is used by some programmers to
implement IF-THEN constructs, any statement
which begins with the execute function can
also be displayed. All other executable
statements are not displayed. Contiguous
blocks of one or more non-control statements
are marked by a single box containing the

A Toolbox for APL Programmers 240 R. Metzger

line numbers which are represented. Blocks
of comment lines are treated similarly,
except that a lamp symbol is displayed to
distinguish the lines from executable state-
ments. If several statements are grouped on
a line, decimal fractions will be added to
the base-line number to distinguish the
statements when necessary.

One final tool was not suggested by the
earlier investigations, but has proven to be
very helpful to programmers debugging
functions. The CHECK tool searches for 12
common syntax errors which are relatively
easy to detect. These errors are:

I) Unmatched Parenthesis,
2) Unmatched Bracket,
3) Misplaced Branch Arrow,
4) Invalid Assignment,
5) Invalid Label,
6) Undefined Character,
7) Invalid Rightmost Character,
8) Invalid Leftmost Character,
9) Misplaced Null,
10) Misplaced Slash,
II) Misplaced Slope,
12) Misplaced Period.

Lines containing a given error are listed
after the relevant error message.
Given the program listed below, the CHECK
tool will produce the output which follows.

V A FUNCTION B
[I] C+~/B
[2] 1.5:A÷
[3] I÷4
[4] O÷(A+B))+C
[5] D÷~5

V

V A FUNCTION B
UNMATCHED PARENTHESES
[~] U÷(A+B))+C
MISPLACED BRANCH ARROW ÷
[3] I÷~
INVALID LABEL :
[2] 1.5:A÷
UNDEFINED CHARACTER
[5] D~5
INVALID RIGHT-MOST CHARACTER ÷
[2] 1.5:A÷
MISPLACED SLASH /
[i] C÷~/B

Program-Improvement Tools

The tools described in this section all
change some part of the definition of an APL
program. They are not meant to change
the program results, but rather the way
the algorithm is expressed, in hopes of
making it easier for people to understand.

The HEADER tool is quite simple. It
rearranges the names localized in the
header, other than the argument(s), result
and function name, so that they are in
alphabetical order.

The LABELS tool replaces all existing
l i n e labels with a set of generated labels.
The new labels are generated by creating a
vector of evenly spaced, increasing

integers, and then an alphabetic character
is used as a prefix to create legitimate
APL names. The user can supply the prefix
letter and the interval between numbers.
This tool is helpful if the labels in a
program were not chosen for meaning, and
if there is no logical way for knowing
where a particular label might be in the
program. When labels have been carelessly
chosen, this tool can also reduce Symbol-
Table entries through standardization.

The RENAME tool systematically replaces
all of the local variable and label names in
a function. It provides four different
methods for creating the new names, and thus
can be used for a variety of purposes. If
the names in a function are too long, a rare
occurrence, the program can abbreviate them.
Abbreviation can be done by simple
truncation, Or by removing duplicated
consonants and vowels which are not in the
first position. If the names are too
similar, perhaps because they are just
numbers prefixed by a letter, the program
can generate names which are composed
of a single letter repeated three or four
times. These names, though meaningless,
have proved sufficiently distinct to prevent
mistyping and misreading. Finally, if a
program has meaningful names, but needs to
have "unlikely" names to avoid conflicts
with the global environment, the same names,
with alternating characters underscored,
can be substituted.

The BREAKUP tool breaks a single
statement with embedded assignments into
several statements containing only one
assignment. On APL implementations like
SHARP APL which provide a statement-
blocking feature, the new statements are
placed on the same line the original state-
ment came from. The BREAKUP tool handles
assignments nested inside brackets or
parentheses according to the following
rules:

I) If one assignment is more deeply
nested than another, the more deeply nested
assignment will be placed first.

2) If two assignments are at the same
level of nesting, the right-most will be
placed first.
These rules will not work for all APL
implementations, due to lack of a consistent
treatment of embedded assignment.
The program correctly avoids breaking up
embedded assignments to quad and quotequad
since these "primitive shared variables"
behave differently depending upon which
side of the assignment arrow they are on.
Given the long statement listed below, the
BREAKUP tool will produce the statements
which follow.

÷ (0 : I + O P O M ÷ P O M [J + ((A B e 1 2 5) ^ ~ ((I O x D I R [N 2 ; 1
])+PH)ENBNC)/I1÷pPOM÷POM[J;6+lI2];])OBO

POM~POM[J;6÷II2]
J ÷ ((A B ¢ 1 2 5)^~((IOxDIR[N2;I])+PH)eNBNC)/~

I÷pPOM
POM+POM[J;]
÷(O=I÷pPOM)pBO

R. Metzger 241 A Toolbox for APL Programmers

The UNBLOCK tool rearranges the
statements in a program so that only one
statement occurs on each line. This is,
of course, only meaningful on systems like
SHARP APL which provide a statement-blocking
feature.

Three tools are provided to convert
statements which use obsolete language
constructs to use instead the current
preferred form. The MIXED tool converts
statements which use mixed output
to use the monadic format function instead.
The IBEAMS tool converts occurrences of
I-beam functions, most of which can be
directly converted to system functions and
variables. Those which cannot be easily
easily converted are marked with a comment
calling for manual conversion. The KEYWORDS
tool is only relevant to systems like SHARP
APL which provided keyword functions before
the introduction of system functions. It
converts references to keyword functions to
refer instead to the corresponding system
functions. Given the mixed-output statement
below, the MIXED tool will produce the
statement which follows.

'ACCT ';DIR[I;I];' TOTALS FOR DEPT ';DEPT

Q~(v'ACCT '),(VDIR[I;1]),(v' TOTALS FOR DEPT
'),(vDEPT)

Finally, mention must be made of one tool
which has not been implemented. The FLOW
tool would rewrite the branching within a
program so that only structured programming
flow-of-control constructs would be used.
It remains to be seen whether this is even
possible, but it would certainly be very
useful. As a first step towards this goal,
however, a substitute is provided. The
current FLOW tool converts a number of the
most commonly used branching constructs from
referring to absolute line numbers, the Line
Counter, or I-beams 26 and 27 t to instead
refer to line labels. This is a necessary
first step to solving the more general
problem, and turns out both to be useful in
conjunction with other programming tools,
and to be a definite help in its own right.

Implementation Considerations

The programming tools described in this
paper are currently available to I.P. Sharp
employees on the SHARP APL timesharing
system. The value of the tools has been
such that versions have also been developed
to work on other APL implementations. For
the purposes of developing these alternative
versions, the various APL implementations
were divided into four classes. All of the
versions of all the programs assume the
existence of the common features of IBM's
APL.SV and VSAPL, specifically the scan
operator, the format and execute functions,
system variables, and system functions.
The first class of APL implementations
provide only these features. The second
class of APL implementations provide, in
addition to the basics, a system function

which returns a character-vector represen-
tation of an APL function, besides
the matrix canonical representation provided
by IBM implementations. The third class of
implementations also provide a system
function to allow direct transmission of
codes to communication terminals, as well as
the ability to place more than one APL
statement on a program line, and the ability
to place comments to the right of all
executable statements on a program line.
The fourth class of APL systems provides,
in addition to the features mentioned above,
a dedicated APL file system, a means of
storing programs in internal-representation
format on data files, and the ability to
call user-defined functions both monadically
and dyadically. Currently only SHARP APL
is the fourth class.

There are versions of all of the
programming tools described for
implementation classes 3 and 4. The ALIGN
and DISPLAY analysis tools, and the UNBLOCK
improvement tool can not be provided for
classes i and 2. The versions for class 2
will run somewhat faster than those for
class i, since the canonical matrix repre-
sentation has to be converted into something
resembling a vector representation in order
to avoid explicit looping.

Since the programming tools will be used
frequently, ideally they should reside in
the workspace where programs are being
developed or changed. In SHARP APL, large
fixed-size workspaces are provided. The
amount of space which the tools would occupy
together in such workspaces makes storing
them in the workspace, when not in use, an
undesirable method. An alternative would
be to force the programmer to copy the tools
from a public library workspace before each
use. This inconvenience would make it less
likely that the programmer would use the
tools. Both of these alternatives can be
avoided, however, by using the flexible
SHARP APL file subsystem, which can store
one or more APL programs in internal-repre-
sentation format in a file component. Two
functions, ANALYZE and IMPROVE, are
provided, which are small cover functions
which open a public library file, fetch the
necessary working functions, execute them,
and erase them when done. This design has
the advantage that it is no more expensive
than copying each time, yet the programmer
only copies the cover functions once, and
thereafter the tools are immediately ~
available whenever needed, without using
much space in the workspace.

In the SHARP-APL versions, the programmer
does not directly access the working tools,
but calls the cover functions, specifying
the functions to be analyzed, the tools to
be employed, and control information through
the arguments. In versions prepared for
other implementations, the programmer calls
the individual tools, specifying a
single APL function, and necessary control
information through the arguments.

A Toolbox for APL Programmers 242 R. Metzger

Though some of the tools and ideas
described in this paper have been
implemented in some form on various APL
systems, one of the important advantages of
the approach taken in this paper is that the
tools described here can be used as a group
on a wide variety of APL systems. The
programs are portable within implementation
classes, and the tools are conceptually
portable between most APL implementations.

Summary

The programming tools described in this
paper were designed on the premise that APL
is fundementally different from other
programming languages. One of the most
important differences is that APL has never
been merely a means of getting a digital
computer to do something, but is just as
importantly a means of facilitating
communication between people. APL programs
should be written courteously, always
considering how the person who reads the
program will understand it. The programming
tools described here can help a programmer
understand APL programs which were not
written in this manner, and improve
understanding of those which were.

These programming tools were designed so
that a programmer could view an APL program
from a variety of perspectives, in order to
overcome the problem of psychological set.
The SMCR communication model, and
relationships to other communication media
were explored so as to provide as complete
a set of tools as possible. One of the most
important aspects of this approach is to
provide a common set of tools which can be
used on a variety of APL implementations.

As APL users give more considerBtion to
those who will read their programs, some of

these tools may become obsolete. Others may
prove to be of such common interest that
they will be provided as auxiliary
processors, or built into APL function
editors. Regardless of future developments,
it is the author's hope that they will save
the users of APL time and frustration as
they develop, debug, and improve the APL
programs which enable them to complete the
larger tasks to which they address
themselves.

References

[i] A.D. Falkoff and K.E. Iverson,
"The Design of APL," IBM Journal of
Research and DeveloRme___qn ~ XVII (1973).

[2] A.D. Falkoff, K.E. Iverson, and
E. Sussenguth, "A Formal Description
of System/360," IBM SYstems Journal,
III (1964).

[3] David K. Berlo, The Process
of Communication: An Introduction to
Theory and Practice (Holt, Rinehart &
Winston, Inc., 1960).

[4] Colin Cherry, On Human Communication,
(Cambridge: MIT Press, 1966), p. 307.

[6] Gerald Weinberg, The PSychology of
Computer Programmin @ (New York:,
Van Nostrand Reinhold, 1971), pp.
162-163.

[6] Weinberg, pp. 266-267.

[7] Weinberg, p. 267.

[8] Weinberg, p. 265.

R. Metzger 243 A Toolbox for APL Programmers

