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Constant propagation is an optimization that substitutes values for names. Interprocedural

constant propagation performs this substitution throughout an entire program, propagating
constant values across procedure boundaries. CONVEX Computer Corporation has developed an
interprocedural optimizer for imperative languages, which is available to users of its C-series

supercomputers. An aggressive interprocedural constant propagation algorithm, such as the one
implemented in this optimizer, can find many constants to propagate into procedures in scientific
FORTRAN applications. Detailed statistics derived from compiling a large set of real scientific

applications characterize both the opportunities for interprocedural constant propagation in
these codes and the effectiveness of the algorithm described. These statistics include the

frequency of interprocedural constant propagation, the different types of interprocedural con-

stant propagation, which constants are most frequently propagated, and the relationship be-
tween interprocedural constant propagation and other interprocedural optimizations.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs—

data types and structures; procedures, functions, and subroutines; D.3.4 [Programming Lan-
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Automatic Programming-program transformation
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1. INTRODUCTION

The need for interprocedural constant propagation results from a conflict

between the goals of software engineering and performance optimization. The

wise programmer generalizes code to make it more extensible and maintain-

able. Two ways to generalize systems are to postpone binding values to

names until run time, and to modularize the system using procedures.

Generality is a noble goal, but there is some performance penalty to be paid

for extra memory loads and procedure calls.

An optimizing compiler particularizes code to make it execute more quickly.

It promotes the binding of values to names to compile time (procedural
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constant propagation). An interprocedural optimizing compiler takes the

process one step further. It will propagate constants across procedure bound-

aries or eliminate the procedure boundary altogether by inline substitution.

CONVEX Computer Corporation has developed an interprocedural opti-

mizer for imperative languages, which is available to users of its C-series

supercomputers. This optimizer is packaged together with existing CONVEX

compilers in a product called the Application Compiler.

Currently, the Application Compiler processes programs containing FOR-

TRAN and C source code. The driver program for the Application Compiler

determines which source files need to be compiled and applies the appropri-

ate front end to those files. The front end performs lexical analysis, parsing,

and semantic analysis. It writes to disk the symbol table, annotated parse

tree, and miscellaneous information for each procedure.

After all source files that need to be (recompiled have been processed, the

driver invokes the interprocedural optimizer. The following analyses are

performed in the order listed:

—Interprocedural type checking. Which calls have type clashes and which

globals are declared incompatibly in different source files?

—Interprocedural call analysis. Which procedures are invoked by each call?

—Interprocedural alias analysis. Which names refer to the same location?

—Interprocedural pointer tracking. Which pointers point to which locations?

—Interprocedural scalar analysis. Which procedures (and subordinates) use

and assign which scalars?

—Interprocedural constant propagation. Which globals and arguments are

constant on entry to which procedures?

—Inline analysis. Which procedures should be inlined at which call sites?

Both subroutines and functions are candidates for inlining, though the

optimizer does not attempt to inline procedures written in one language

into a procedure written in another language.

—Clone analysis. Which procedures should be duplicated so that they can be

modified with information about a specific call site?

—Interprocedural array analysis. Which procedures (and subordinates) use

and assign which sections of arrays?

—Storage optimization. How should application data structures be rear-

ranged to improve the usage of the memory hierarchy?

Each analysis algorithm reads from the program database and writes the

information it generates back to that database.

After the interprocedural algorithms have completed, the driver program

invokes the compiler common back end for each procedure in the application.

The back end consists of a machine-independent optimizer and a machine-

dependent code generator. In the Application Compiler, the optimizer has

been modified to make use of information gathered by an interprocedural

analysis phase, rather than to make worst-case assumptions about things

like procedure side effects.
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The optimizer first performs all of the standard procedure-scope scalar

optimizations; it then performs automatic vectorization and parallelization.

The code generator is table driven and supports several similar architectures.

Interprocedural constant propagation by itself does not greatly increase the

performance of applications. The benefits result from enabling the following

optimizations to be more effective:

—constant folding and propagation;

—dead-code elimination, including test elimination;

—loop strip mining for vectorization;

—dependency analysis for vectorization, parallelization, and memory hierar-

chy optimization; and

—loop interchange for vectorization, parallelization, and memory hierarchy

optimization.

The last two optimizations are the most important for high-performance

computers. The desire to improve their effectiveness was the chief motivation

for doing interprocedural constant propagation.

In this paper a constant is one of the following:

—a literal whose value is determined at compile time;

—a literal expression that can be evaluated at compile time; or

—a name\ literal value\ source location tuple, where the compiler can deter-

mine that, on all execution paths that could reach the location, the name

will always have the corresponding literal value.

A procedure is a FORTRAN subprogram or a C function. Substitution of

FORTRAN statement functions is performed by front end and is outside the

scope of this paper.

The interprocedural constant propagation algorithm identifies those argu-

ment and global variables that have a single constant value, known at

compile time, at all call sites of a given procedure. It also records those

argument and global variables that have multiple constant values, all known

at compile time, at different call sites of a given procedure. The cloning

analysis algorithm uses this information to determine whether one or more

copies of a procedure should be made in order to allow propagation of each

distinct combination of constant values into the copies.

2. IMPLEMENTATION

The following data structures are created prior to interprocedural constant

propagation, and are used as input to this and other algorithms:

—call graph, represented as lists of predecessors and successors for each
procedure;

—list of initialized globals;

—global variable/formal argument aliasing information;

—formal\actual argument type mismatch information;

—bit vectors indicating which variables may be assigned by procedure calls;

and
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—an abstraction of each procedure, consisting of a flow-graph dominator tree

containing the following:

—procedure calls, with symbolic expressions for actual arguments;

—assignments to scalars, with symbolic expressions for right-hand-side

values;

—loop heads; and

—loop tails.

The algorithm assumes at the start that all variables have unknown, varying

values. It then discovers those variables that have constant values through

the algorithm whose pseudocode is given in Figure 1.

The output of the interprocedural constant propagation algorithm is a list

of symbol/value pairs for each procedure. These variables always have the

same constant value upon invocation of the procedure.

The current implementation propagates all floating-point and integer types,

both signed and unsigned, supported by the CONVEX FORTRAN and C

compilers and the CONVEX C-series architecture. It also propagates the

FORTRAN complex data types. Although we have seen character constants

that could be propagated, our implementation does not currently do this.

Such constants rarely contribute to optimizing the scientific FORTRAN and

C codes we investigated. The algorithm does not propagate address constants

either. This would be useful, since indirect calls could be converted to direct

calls. This would make it possible to substitute the called procedure inline, if

that optimization was appropriate.

The Application Compiler will propagate constants to procedures that are

called indirectly, since it creates a list of potential callees for each call site.

Aliasing between variables of different types does not prevent constant

propagation as long as only one of the variables is assigned values.

3. USING PROPAGATED CONSTANTS

The primary use for the results of interprocedural constant propagation is for

increasing the effectiveness of the procedural constant propagation algo-

rithm. Procedural constant propagation is performed after the scalar opti-

mizer has converted the procedure into a graph representation and has

performed data-flow analysis on it.

Each basic block is represented as a directed acyclic graph. Within basic
blocks, data-flow arcs connect operators to operands. Use-definition arcs

constrain the order in which memory references occur. Basic-block DAGs are

the nodes in a control-flow graph. Within the control-flow graph, arcs show

possible control flow between blocks and identify loop structures. The control

flow graph is reducible and contains use-definition information. Such infor-
mation tells, for a given use of a variable, what definitions of that variable

have a path that reaches the use.

The procedural constant propagation algorithm in the scalar optimizer

substitutes uses of variables with uses of constants if the variable has the
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done = FALSE

while done == FALSE

for each procedure P i.n call graph in forward topological sort order

set “current constants” equal to “constants on entry” for P

for each node of dominator tree of P in forward topological sort order

s@Olic_interpretation (node)

end

set “constants on exit” equal to

end

if any new constants found then

“current constants” for P

for each procedure P in call graph in reverse topological sort order

set “current constants” equal to “constants on entry’” for P

for each node of dominator tree of P in forward topological sort order

symbolic_interpretation (node)

end

set “constants on exit” equal to “current constants” for P

end

else

done = TRUE

endif

end

sYmbolic_interpretation (node) :

case assignment:

add <lvalue/rvalue> pair to “current constants*’ for procedure

case call:

merge “current constants” for caller procedure

“constants on entry” for called procedure

merge “constants on exit” for called procedure

“’current constants’” for caller procedure

case loop:

with

with

remove all <symbol/constant> pairs from “’current constants”’ for which

the symbol may be assigned directly or indirectly within loop

end

Fig.1. Interprocedural constant propagation algorithm.

same value on all control-flow paths. It finds constants to propagate

three sources:

(1) assignments,

(2) static initializations (iftheprocedure isthe``main'' procedure), and

(3) constants on entry.

from

The last source is available only if interprocedural constant propagationis

performed. This algorithm provides input to other optimizations, such as

constant folding, control-flow simplification, etc.
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The target architecture for this compiler (CONVEX C-series) provides

scalar instruction formats that allow short and word integer and single-

precision floating-point operands as immediate fields. This mitigates, to some

extent, the problem created by giving the register allocator more constants

than it can put in a relatively small register file. Double-precision floating-

point operands and scalar operands for vector instructions must be in regis-

ters. We tuned the priorities of the register allocator to make good choices

when faced with a greatly increased number of constants provided by our

algorithm.

The results of interprocedural constant propagation are also used by the

interprocedural algorithms that follow it. Automatic inlining is performed by

identifying call sites that are executed frequently, and procedures that cause

the smallest code expansion when substituted inline. Propagated constants

often provide exact loop limits. This makes the compile-time frequency esti-

mation technique nearly as effective as using execution-time profile data,

which can be supplied by the user when available.

Interprocedural array section analysis also uses the results of constant

propagation. This phase analyzes and summarizes the reference patterns for

the elements of arrays. Sections are initially created on a per-procedure basis.

Before the interprocedural algorithm executes, a pass goes through all of the

input array sections and substitutes interprocedural constants for variables

referenced in the section descriptors. This increases the subsequent effective-

ness and efficiency of array section analysis.

4. RELATED WORK

Torczon [1985] described a variety of algorithms that can be used for inter-

procedural constant propagation:

—Inline all nonrecursive calls, and then perform procedural constant propa-

gation.

—Iterate over the call Multigraph. Perform symbolic procedural constant

propagation of each called procedure. Use the known constant-valued

formal parameters and global variables to determine which potentially

constant actual arguments should be transferred to formal parameters of

called procedures.

—Iterate over the call Multigraph. Perform procedural constant propagation

of each called procedure. Use the results to determine which actual argu-

ments have constant values that should be transferred to formal parame-
ters of called procedures.

—Iterate over the call Multigraph. Use DEF-USE chains previously com-

puted to transfer constant formal parameters to actual arguments passed

to called procedures.

—Use a map that associates each formal parameter with every formal to

which it may be bound, directly or indirectly. Perform procedural constant

propagation on each procedure. Propagate constant-valued actual argu-

ments to all associated formal parameters that have the same constant

value.
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—Perform procedural constant propagation. Transfer constant actual argu-

ments to the directly associated formal parameters.

Torczon characterized these algorithms in terms of the types of constants

potentially propagated, the complexity of the algorithm, and the interproce-

dural information required to perform it.

Our algorithm iterates over the call Multigraph, as do three of the methods

Torczon mentioned. Our solution algorithm for each call combines aspects of

each of the iterative methods she described.

Burke and Cytron [ 1986] discussed interprocedural constant propagation in

the context of dependency analysis for parallelization. They asserted that it is

essential to propagate constants to scalar variables that are used in depen-

dence equations. They did not provide for procedure cloning, stating that

“such splitting can become very expensive.” Our statistics show that uncon-

trolled cloning can be very expensive, but that targeted cloning increases the

number of useful constants efficiently. Their approach to interprocedural

analysis did not support recursion. Ours does.

Callahan et al. [1986] implemented an interprocedural constant propaga-

tion algorithm in the context of their FORTRAN vectorization system (PFC).

It performs interprocedural analysis after analyzing each individual proce-

dure and before attempting to vectorize those procedures.

Callahan et al. represented the value of each procedure parameter (includ-

ing global variables) using a symbolic transition function. These functions are

evaluated as each procedure is visited in topological sort order. The transition

function for each parameter and return value at each call contain a general

expression tree. Our algorithm does not use general expressions, but is

currently limited to linear forms & + @ + C, or degenerate cases thereof.

This form represents most of the subscript values we were interested in, and

is more efficient to evaluate and to store. We could easily substitute a general

expression tree if it was useful. Their implementation supports propagation

of static initializations, and return values back out of called procedures. Our

implementation supports propagation of static initializations. We support

propagation of values from a called procedure to a calling procedure through

global variables, but not through function return values.

Wegman and Zadeck [1991] discussed inter-procedural constant propaga-

tion after presenting four increasingly powerful algorithms for intraprocedu-

ral constant propagation. They did not perform procedure cloning and con-

ceded that “the number of constants propagated across a procedure boundary

may be small, since the only constants propagated across a procedure bound-

ary are those having the same constant value at all call sites.” Our observa-

tions substantiate their conjecture.

Wegman and Zadeck felt that one of the strong points of their approach

was that they feed back the results of constant propagation into dead-code

elimination and alias analysis. This feedback might remove procedure calls
and assignments, thus opening up additional opportunities for constant
propagation. The other approaches, including ours, do not feed the results of

interprocedural constant propagation back to call graph analysis and alias

analysis.
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Table I. General Application Characteristics

Total
Total

Calls per procedure
source

Application procedures lines Average Maximum

Ballistics 1

Ballistics 2

Circuit sim

Comp them 1
Comp them 2
Finite elem 1
Fluid dynam 1

Fluid dynam 2
Fluid dynam 3
Fluid dynam 4

Mech CAE 1
Mech CAR 2
Mech CAE 3

Mole model 1

Mole model 2
Nuclear sim

Oper research
Reserv model 1

Reserv model 2
Reserv model 3

Reserv model 4
Signal proc

Simulation 1
Simulation 2
Struct mech 1
Struct mech 2
Weather sim 1

Weather sim 2
Weather sim 3

Average

222

210

238

158

338

1,398

38

629

263

31

43

223

422

578

58

373

102

115

1>061

688

293

307

86

221

648

989

54

400

77

353.9

19,292

28,971

60,774

32,031
79,552

207,619
11,506

31,387
52,326

3,175

9,426
24,667

108,607

71,678

6,794
87,973

14,882
16,508

210,019

148,915

88,924
86,306

24,334
30,464
45,854

195,132

20,776
68,127
15,290

62,114.1

9.4

4.8

17.3

5.2

5.7

17.2

3.0

10.8

5.5

2.0

2.2

5.5

9.8

11.0

3.0
3.5
2.0

7.9
8.8

9.5
4,0

7.3
7.4

9.7
3.8
4.9

5.8

9.4
1.7

6.8

144

76

231
137

78
251

16

248
106

34
23
54

112

430

26
47

21
99

339

237

85
97

161

70
224
101
78

199
19

129.0

The Wegman and Zadeck approach applies to a wide range of programming

languages. The other two papers addressed only FORTRAN. Our implemen-

tation supports both FORTRAN and C, and should support any similar

high-level language. None of these papers provides any empirical evidence

on the effectiveness of their approach when compiling actual application

programs.

5. EMPIRICAL STUDIES

5.1 Applications

Table I describes the relevant characteristics of the applications that were
studied for this paper. All of them were coded primarily in FORTRAN, with

occasional calls to C code for system interfaces.
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Table II. Constants Available for Propagation

Total Available Available

scalar Scalar formals global constants formal constants

Application globals Average Maximum Average Maximum Average Maximum

Ballistics 1
Ballistics 2
Circuit sim
Comp them 1

Comp them 2
Finite elem 1
Fluid dynam 1
Fluid dynam 2

Fluid dynam 3
Fluid dynam 4

Mech CAE 1

Mech CAE 2

Mech CAE 3

Mole model 1

Mole model 2
Nuclear sim

Oper research
Reserv model 1

Reserv model 2
Reserv model 3
Reserv model 4

Signal proc
Simulation 1
Simulation 2
Struct mech 1

Struct mech 2
Weather sim 1

Weather sim 2

Weather sim 3

545

294

609

136

514

2,628

198

2,190

390

60

22

177

349

849

201

893

415

673

978

1,341

1,243

457

233

649

1,103

1,386

404

652

693

3.8
3.5
2.0
2.8

2.8
2.2
1.4

3.7

5.0
4.3

5.2

2.2

2.7
4.5

2.5
2.1

3.1

1.8
3.0
4.2
2.9
4.0

1.6
1.8
1.9

2.9
10.9

3.1
1.8

33
28
10
12

14
19
5

24

21
15

19

19

17

37

8
21
13

10
28

62
21
22

8
15
12

21
47
18

9

213.0
16.6
15.2

1.8

25.6
10.5
36.9

2.1

49.2
2.4

6.8

42.6
17.6

0.5
3.0

2.1

0.0
0.5
0.2

0.4
8.0
1.5

68.3
0.8
6.6
1.2

58.0
34.0

5.3

233
32
18

9
52

124
58
19

127

9

8
86

34

65
10
4

0

25
55
57

61
63
71

177
21

98
76

57
18

0.7
0.4
0.6

0.2
0.8
0.7
0.5
0.4

0.1

0.3
0.7

0.6

0.5

0.7
0.3

0.3
1.3

0.5
0.8
0.9
0.4
1.2

0.2
0.5
0.3

0.7
2.9
0.5

0.3

7
2
4
4

7
4
2

10

3

3
4

6

5
11

2
4

5
2

8
9
3

22
4

7
7

8
8
5

2

Average 676.1 3.1 19.6 21.0 55.6 0.6 5.6

The first column of Table I identifies the application. The second column

lists the total number of procedures in the application. The third column

gives the total number of source lines in the application. The next two

columns list the mean and maximum number of procedure calls per proce-

dure.

5.2 Available Constants

Table II gives statistics on the number of constants that are available on

entry to procedures, as computed by our algorithm. In general, there are

many more global variables that are known to be constant on entry to a

procedure than those that are actually used in any given procedure.
The first column identifies the application. The second column gives the

total number of COMMON (global) scalar variables in the application. This is
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a count of unique scalar locations. It does not include aliases. The next two

columns give the mean and maximum number of formal arguments per

procedure. The next two columns give the mean and maximum number of

constants available through scalar COMMON variables. The last two columns

list the mean and maximum number of constants available through formal

arguments. These numbers were generated with inline substitution turned

off, and procedure cloning for the default case (integer variables that feed

loop bounds or subscripts).

Our applications range in number of scalar global variables from 22 to

2628, with a median of 545. In 12 of the applications, our algorithm deter-

mined that 10 percent or more of all global variables were constant on entry

to at least one procedure. In a further 7 of the applications, we found that

between 5 and 10 percent of all global variables were constant on entry to at

least one call.

5.3 Constant Propagation and Other Optimizations

Table III gives totals of constants propagated when procedure cloning and

procedure inlining are turned on or off. The purpose of performing procedure

cloning is to increase the opportunities for constant propagation. The num-

bers reported in this table are the number of nodes in a data-flow-graph

representation of the procedures that were converted from variable USE

nodes to CONSTANT nodes. This is different from the number of unique

variable names that corresponded to constants.

By definition, inline substitution reduces the number of interprocedural

constants propagated explicitly, since the procedure boundary is removed. Of

course, inlining propagates these constants implicitly, but they no longer

appear in constant propagation statistics.

The first column identifies the application. The second column gives the

total when inlining is turned off and when cloning is performed for integer

variables that feed loop bounds or subscripts. The third column gives the

total number of constants propagated when procedure inlining and procedure

cloning are both turned off. The next column lists the total when inlining is

turned off and when cloning is performed whenever it can create the opportu-

nity for propagating a constant. The last column gives the total constants

propagated when inlining and procedure cloning are both performed at the

default level used by the Application Compiler.

Comparing the first and second columns of numbers shows how important

procedure cloning is in obtaining usable constants. In 14 of the applications,
more than 50 percent of the propagated constants were due to cloning. In 4

additional applications, more than 25 percent of the propagated constants

were due to cloning.

The wisdom of targeting cloning at specific variables that may improve

other optimizations is demonstrated by subtracting the values in the second

column of numbers from the first, and subtracting the first column from the

third. The first result is the number of constants that are added due to

targeted procedure cloning. The second result is the maximum number of

constants that could be propagated, with uncontrolled cloning.
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Table III. Constant Propagation and Other Optimizations

Total number of constants propagated

Inline Inline Inline Inline

none/clone none/clone none/clone medium/clone
Application default none all default

Ballistics 1 914 705 2,720 973
Ballistics 2 700 637 1,452 694
Circuit sim 895 48 2,429 380
Comp them 1 76 41 173 75
Comp them 2 1,367 1,069 8,286 1,367
Finite elem 1 15,806 150 Too big NA
Fluid dynam 1 149 137 334 149
Fluid dynam 2 215 108 1,584 NA
Fluid dynam 3 1,119 1,103 2,753 1,235
Fluid dynam 4 15 12 33 16
Mech CAE 1 109 80 115 104
Mech CAE 2 1,076 629 28,288 1,064
Mech CAE 3 364 182 3,279 506
Mole model 1 1,312 1,112 4,773 1,300
Mole model 2 70 63 97 70
Nuclear sim 272 42 750 270

Oper research 105 25 348 105
Reserv model 1 120 37 314 67
Reserv model 2 2,260 341 Too big 2,228
Reserv model 3 1,277 285 Too big 1,264
Reserv model 4 1,392 646 2,681 1,298
Signal proc 1,010 196 2,133 709
Simulation 1 86 84 1,877 116
Simulation 2 27 17 536 26
Struct mech 1 214 110 508 137
Struct mech 2 1,028 432 Too big 958
Weather sim 1 6,998 2,902 7,164 6,715
Weather sim 2 1,832 1,640 4,506 1,819

Weather sim 3 250 185 620 238

Average 1,368.6 433.9 3,110.1 884.6

5.4 Variables and References

Table IV correlates the number of distinct variables and the number of

variable references converted to constant references. The CONVEX compilers

represent user procedures in a data-flow-graph representation. The data in

this table count variable references after this representation has been created

and after standard scalar optimizations have been performed.

The first column identifies the application. The remainder of the table

compares the number of variables that were determined to be constant with

the number of variable references that were converted to a constant. The first

three numeric columns provide this comparison when procedure inlining is

turned off. The last three numeric columns provide this comparative data
when inlining is performed at the default level.

In all but five of the applications, the number of unique interface variables

determined to be constant and the number of variable references actually
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Table IV. Variables and Uses Absorbing Constants

Inline none Inline medium

Number Number

Number of of Average Number of of Average

Application variables uses per variable variables uses per variable

Ballistics 1

Ballistics 2

Circuit sim

Comp them 1

Comp them 2

Finite elem 1

Fluid dynam 1

Fluid dynam 2

Fluid dynam 3

Fluid dynam 4

Mech CAE 1

Mech CAE 2

Mech CAE 3

Mole model 1

Mole model 2

Nuclear sim

Oper research

Reserv model 1

Reserv model 2

Reserv model 3

Reserv model 4

Signal proc

Simulation 1

Simulation 2

Struct mech 1

Struct mech 2

Weather sim 1

Weather sim 2

Weather sim 3

Average

586

211

175

35

496

1,417

85

77

278

13

40

283

219

340

20

85

35

87

528

426

135

424

56

21

163

581

369

443

33

255.4

914 1.6
700 3.3

895 5.1

76 2.2

1,367 2.8

15,806 11.2

149 1.8
108 1.4

1,119 4.0
16 1.2

109 2.7
1,076 3.8

364 1.7

1,312 3.9
70 3.5

272 3.2

105 3.0
120 1.4

2,260 4.3

1,277 3.0
1,392 10.3

1,010 2.4

86 1.5

27 1.3

214 1.3
1,028 1.8

6,998 19.0

1,832 4.1

250 7.6

1,365.1 3.8

580

210

172

34

495

NA

85
NA
301

13

35
272
284

318
19
84

35
34

490

413
109

368
62
20

109
509
344

439

32

217.3

973

694

380

75

1,367

NA
149

NA
1,235

16
104

1,064

506
1,300

70
270

105

67

2,228
1,264
1,298

709
116

26
137
958

6,715
1,819

238

884.6

1.7

3.3

2.2

2.2

2.8

NA
1.8

NA
4.1
1.2

3.0
3.9
1.8
4.1

3.7
3.2

3.0
2.0

4.5

3.1
11.9

1.9

1.9

1.3
1.3
1.9

19.5

4.1

7.4

3.8

converted to constants both decreased when inline substitution was per-

formed. These results fit with intuition, since procedure inlining reduces the

total number of arguments passed in the application. When inlining is

performed, constant actual arguments are substituted for formal arguments,
but these are not counted as interprocedural constants propagated by our

compiler.

The five exceptional cases are a result of the interaction between constant

propagation and inlining. If a procedure is substituted inline for more than

one call, the total number of variable references in the application goes up.

This makes it possible for the number of variable references converted to

constants to go up, even though the number of interface variables has gone

down. Even the number of interface variables found to be constant can go up

when inlining is performed. This happens when a variable that could be
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Table V. Types of Interprocedural Constant Propagation

Percent Percent
Literal Evaluated arguments Assigned to Initialized globals

constant constant found common in common found
Application arguments arguments constant variable block constant

Ballistics 1

Ballistics 2

Circuit sim

Comp them 1
Comp them 2
Finite elem 1
Fluid dynam 1
Fluid dynam 2
Fluid dynam 3
Fluid dynam 4

Mech CAE 1

Mech CAE 2

Mech CAE 3

Mole model 1
Mole model 2

Nuclear sim

Oper research
Reserv model 1
Reserv model 2
Reserv model 3
Reserv model 4
Signal proc
Simulation 1
Simulation 2
Struct mech 1

Struct mech 2

Weather sim 1

Weather sim 2

Weather sim 3

Average

127
28

134

22

198
1,245

9
132

15
10

11

106

186
309

14

69
29

80
493
388

91
349

9
18

120

557

221

141

14

170.8

84
167

6
5

61
154

11
15

80
0

23

10

14

99

2
11
10

7
58
41
45
72

1

3

37

39
199

83
12

45.0

24.8

25.1

34.4

5.4

28.3

54.2

42.6

6.2

1.7

7.6

11.8

26.6

11.6

9.8

8.9

11.0
13.4

43.0
18.4
14.3
16.0
14.3

6.8
4.9

12.7

16.5

60.0
18.7

18.3

8.8

58

171

1

8
7

48
72
2

211
3
8

173
23
2
5
5
0
0
3

11

27

12

21

0

0

2

140

225

13

41.7

416

0
35

0

247
6
0
0

49

0
0

0

0

0

0
0
0
0
0
0
0
0

26

0
28

2

0

44

0

28.4

87
58
6
6

49
2

36
0

67
5

36
98

7
0
2
1

0
0
0
1
2

3

20

0

3

0

35

41

2

10.4

forced constant through a clone is now used in a context in which the cloning

algorithm considers cloning to be profitable.

5.5 Types of Interprocedural Constant Propagation

Table V breaks down the constants propagated by their origin. The first

column identifies the application. The second column gives the total number

of constants propagated that were literal constants (any type) passed as

arguments. The next column lists the total number of constants propagated

that were variables passed as arguments. The fourth column gives the sum of

the previous two columns as a percentage of the total number of formal

arguments. The next column gives the number of values that were assigned
to COMMON variables. The following column gives the number of values that

were initialized in a COMMON block. The last column gives the percentage of

global variables that were found to have a constant value on entry to at least
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Table VI. Constant Values Propagated

Total Total Total Total Total Total Other

Application o 1 0.0 1.0 –20..–1 2..20 integer

Ballistics 1
Ballistics 2
Circuit sim
Comp them 1

Comp them 3
Finite elem 1

Fluid dynam 1

Fluid dynam 2
Fluid dynam 3
Fluid dynam 4

Mech CAE 1
Mech CAE 2
Mech CAE 3
Mole model 1
Mole model 2

Nuclear sim
Oper research

Reserv model 1
Reserv model 2

Reserv model 3

Reserv model 4

Signal proc

Simulation 1
Simulation 2
Struct mech 1
Struct mech 2
Weather sim 1
Weather sim 2
Weather sim 3

Average

67
2
4
1

26

35
14

NA
5

3
4

27
58

8
17

1
1

85

61

12

33
1

2
15
45

1
18
10

19.4

78
4

66
12
41

137

5

NA
12

5

7
30
68
29

4

7
7

12
134

83

49

115

0

5
17
95
89
98

9

42.0

34
0
0
0

33
1

2

NA
o

3
0

5
2
1
1
4

0
1
3

4

1

0

7
4
4
0
0

5
1

4.0

60

0

0

0

63

0

3

NA

14
2
1

0
1
1
0
1
0

0
0

0

3

2

3
0
0
0
0

11

0

5.7

2
4
0
2
0

46

4

NA
o

0
0

2
13

6
0
1

0
1
8

7

1

11

0
0

0
4

0
1

2

4.0

73
165

63
16

162

884

19

NA

84
0

23

185
60

114
6

11

6
38

211

203

56

208

4
10

83
314

62
242

10

114.2

14

36

15

4

84

306

27

NA

128

0
4

54
46

123
1

43
21

34
86

67

11

55
1

0
42

121
106

25
1

Other

float

o
27

0

87

8

11
NA
35
0
1
0
2

8

0

1

0

0

1
1
2
0

40
0
2
2

111
43

0

50.2 22.1

one procedure. These numbers were generated with inline substitution turned

off and with procedure cloning for the default case (integer variables that feed

loop bounds or subscripts).

The global variable numbers demonstrate the importance of having a
constant propagation algorithm that detects constant global variables as well

as constant arguments. There are seven applications shown where more than

50 percent of the total propagated constants were global variables. There are
a further three applications where between 25 and 50 percent of the propa-

gated constants were global variables. As the fourth column of numbers

shows, most applications did not statically initialize global variables that

remained constant. In six applications, however, there were dozens and even

hundreds of such variables.

5.6 Constant Values Propagated

Table VI breaks down the constants propagated by their value. The first

column identifies the application. The next two columns give the total num-
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ber of constants propagated to integer variables that had the values O or 1.

The following two columns give the total number of constants propagated to

floating-point variables that had the values 0.0 or 1.0. The next column gives

the total number of constants propagated to integer variables that had values

from – 20 to – 1. The next column gives the total number of constants

propagated to integer variables that had values from 2 to 20. The following

column provides the total number of constants propagated that had integer

values outside the range – 20 to 20. The last column gives the total number

of constants propagated to floating-point variables that did not have the

values 0.0 or 1.0. These numbers were generated with inline substitution

turned off and with procedure cloning for the default case (integer variables

that feed loop bounds or subscripts).

The values O and 1, both integer and floating point, are obviously a large

fraction of the total set of unique values propagated. Small integer values, in

the range – 20 to -t-20, are also a large subset of the values propagated. The

most popular integer constant outside this range was 80, which is the length

of a punched card.

Seven applications had more than two dozen distinct propagated real

values; however, most had none at all. This is partially the result of our

cloning strategy, which targets values used as loop limits and array sub-

scripts.

5.7 Effects on Procedural Constant Propagation

Interprocedural constant propagation does not improve the performance of

applications by itself. It depends on procedural constant propagation to

actually change the procedure. As the procedure representation is simplified,

the optimizations we are actually targeting, such as dependence analysis and

loop interchange, are made more effective. The purpose of the next table is to

show how interprocedural constant propagation affects procedural constant

propagation.

Table VII provides information on the increase in procedural constant

propagation resulting from interprocedural constant propagation. The first

column identifies the application. The second and third columns give the total

number of variable uses changed to constants when interprocedural constant

propagation is turned off or on, respectively. These uses are substituted after

basic blocks have been converted to directed acyclic graphs and after redun-

dant use elimination has been performed on a procedure basis. Both of these

optimizations reduce the number of distinct uses of a variable. If we were

simply substituting constant values for variables in the original program

text, the numbers would be higher. The next column gives the total number of

additional constants propagated within a procedure when interprocedural

constant propagation is turned on. The last column gives the percent increase

of constants propagated within a procedure when interprocedural constant
propagation is turned on. These numbers were generated with inline substi-

tution turned off and with procedure cloning for the default case (integer

variables that feed loop bounds or subscripts).
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Table VII. Increase in Procedural Constant Propagation

Total uses changed

to constants
Total Percent

Auulication ICP Off ICP on increase increase

Ballistics 1

Ballistics 2

Circuit sim
Comp them 1

Comp them 2
Finite elem 1

Fluid dynam 1
Fluid dynam 2

Fluid dynam 3
Fluid dynam 4
Mech CAE 1

Mech CAE 2
Mech CAE 3
Mole model 1
Mole model 2

Nuclear sim
Oper research

Reserv model 1

Reserv model 2
Reserv model 3

Reserv model 4

Signal proc

Simulation 1

Simulation 2
Struct mech 1

Struct mech 2
Weather sim 1

Weather sim 2
Weather sim 3

Average

358
1,538
3,131
2,038
2,296

13,220
127
749

2,004
369
803
707

2,667
2,904

285
2,436

388

590

5,409
4,120

3,974

832

361
488

1,613

3,590
1,489
2,858

1,287

2,159.7

1,450
2,247

3,746

2,126
2,813

19,105
336

1,024

2,082

387
928

1,106
3,124
4,446

360
2,747

509
1,055

7,650

6,147
4,916
1,667

384
537

1,822

5,200
3,184
4,933

1,469

3,017.2

1,092

709

615

88
517

5,885

209

275

78
18

125

399
457

1,542
75

311

121
465

2,241

2,027

942
835

23

49
209

1,610
1,695
2,075

182

857.6

305
46

20
4

23

45

165

37
4

5
16
56
17

53
26
13

31

79
41

49

24
100

6

10
13

45
114

73
14

39.7

5.8 Procedure Cloning

Procedure cloning is a special interprocedural optimization performed solely

for the purpose of increasing the number of propagated constants. Procedures

are cloned when constant propagation determines that the value of an

interface variable is constant at a given call site, but that it has a different

constant value or that it has a variable value at another call site to the same

called procedure. When such a condition occurs and when the situation is

determined to be profitable, a complete copy of the called procedure is made,

the call site is changed, and the constant is propagated into the clone.

Procedure cloning has the potential to cause an explosion in the size of the

generated code. For this reason, it is only considered profitable when there is
a potential to propagate constants that will contribute to other optimizations.

The compiler currently creates a clone when it identifies the potential to

propagate a constant into a variable that is one of the following:
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Table VIII. Procedure Cloning

Total Total Percent Percent
Clones of procedureclones cloned procedures procedures

Application created procedures Average Maximum cloned increased

Ballistics 1

Ballistics 2

Circuit sim

Comp them 1

Comp them 2
Finite elem 1

Fluid dynam 1

Fluid dynam 2
Fluid dynam 3

Fluid dynam 4
Mech CAE 1
Mech CAE 2
Mech CAE 3
Mole model 1

Mole model 2

Nuclear eim

Oper research

Reserv model 1

Reserv model 2
Reserv model 3

Reserv model 4
Signal proc
Simulation 1

Simulation 2
Struct mech 1
Struct mech 2

Weather sim 1

Weather sim 2
Weather sim 3

Average

30

13

59
13

91
951

4

51
5
1

10
58
57
62

3

25
19

59

226
112

30

158
1

7
92

193

33

31

7

80.0

10
6

9

7

17

117

2

20

5

1
2

12

17

30

2

11

1

7

84
28

17

40
1

5
12
80

11

20

5

19.3

3.0

2.2

6.6
1.9

5.4

8.1
2.0

2.0
1.0
1.0
5.0
4.8

3.4
2.0
1.5

2.3
19.0

8.4

2.7
4.0

1.9
4.0
1.0

1.4
7.7
2.4

3.0
1.6

1.4

3.7

11

7

45

6
41

119

3
17

1

1
5

18

19
12
2

6
19

26

16
16

11

18
1

3
27
12

9
5

3

16.0

4.5

2.9

3.8

4.4

5.0

8.4

5.3

3.2

1.9

3.2

4.7

5.4

4.0

5.2

3.4

2.9

1.0

6.1

7.9
4.1

5.8
13.0

1.2
2.3
1.9

8.1

20.4
5.0

6.5

5.6

14
6

28
8

27
68
11
8
2
3

23
26
14
11
5
7

19
51
21
16
10

51
1
3

14
20

61

8
9

23.4

—a formal argument or global variable that is used directly or indirectly to

control a loop (start, stop, or step value),

—a formal argument or global variable that is used directly or indirectly as a

part of an array subscript expression, or

—a formal argument that is used in a comparison in a conditional statement.

The first two criteria were chosen to increase the number of constants

propagated that would be used by dependency analysis and loop interchange.

The third criterion was chosen to increase the possibilities for dead-code

elimination.

Table VIII provides more information on procedure cloning. The first

column identifies the application. The second column gives the total number
of clones that were created. The third column gives the total number of

procedures that were cloned. The next two columns give the mean and

maximum number of clones per procedure. The next column gives the per-
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centage of all procedures in the application that were cloned. The last column

gives the percent increase in the number of procedures in the application

after cloning was performed. These numbers were generated with inline

substitution turned off and with procedure cloning for the default case

(integer variables that feed loop bounds or subscripts).

The percentage of procedures cloned range from 0.98 to 20.37 percent, with

a median value of 4.5 percent. All but two of the applications had less than 9

percent of their procedures cloned. We believe these low figures indicate the

effectiveness of our tai-geted approach to cloning and constant propagation.

5.9 Procedure Cloning Choice Effectiveness

The effects of procedure cloning and inline substitution on procedural con-

stant propagation are very similar. The question then arises as to how

effective the Application Compiler is at choosing procedures to clone. It

prefers inlining to cloning in general, since inlining eliminates call overhead.

The Application Compiler first analyzes calls for potential inlining and then

analyzes the remaining calls for potential retargeting to clones.

Analyzing the relationship between calls and clones can help determine

whether this simplistic sequencing is sufficient or whether a more compli-

cated sequencing is desired. One alternative would be iterating between

cloning and inlining until the solution stabilizes. Clones that have only one

call retargeted to them might be better off inlined instead. A high percentage

of such clones might suggest that a more complicated sequence could do

better by inlining more of these calls instead.

Table IX shows the relationship between calls and clones. The values were

computed with automatic inlining turned on. The first column identifies the

application. The second column gives the total number of clones created. The

third column gives the number of calls that were retargeted to call a clone

instead of the original routine. The next column gives the average number of

calls that were retargeted to one of its clones for each cloned procedure. The

following column lists the total number of clones that had only one call

retargeted to them, referred to as “single” clones. The final column shows

what percentage of the total clones were “single” clones.

As can be seen in the figures at the bottom of the table, on average, 21.8

percent of all clones were single clones. This suggests that the Application

Compiler could do better by inlining those calls instead of retargeting them.

On the other hand, the average number of calls retargeted to a clone was

4.14. This indicates that the cloning algorithm is effective, on average, since
inlining each of those calls instead would have greatly increased the program

size.

5.10 Benchmark Speedups

The applications analyzed in this paper are proprietary to CONVEX cus-

tomers and third-party software vendors. Thus, our results cannot be repro-

duced by others. Other researchers can compare their results with ours using

Table X, This table shows the relationship between constant propagation and
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Table IX. Clone Choice Effectiveness

Total Total Average Percent
clones calls to calls to Single single

Application created clone clone clones clones

Ballistics 1

Ballistics 2

Circuit sim
Comp them 1
Comp them 2
Finite elem 1
Fluid dynam 1
Fluid dynam 2
Fluid dynam 3
Fluid dynam 4
Mech CAE 1

Mech CAE 2

Mech CAE 3
Mole model 1

Mole model 2

Nuclear sim

Oper research
Reserv model 1

Reserv model 2

Reserv model 3
Reserv model 4
Signal proc
Simulation 1

Simulation 2

Struct mech 1
Struct mech 2
Weather sim 1

Weather sim 2
Weather sim 3

Average

23

13

56

12

86

327

4

12

5

1
5

44

42

42

2

24

19 .

8

185

101
12

107

1

6

65

152

21

26

7

46.9

122

74

568
92

397
1,473

4

23
12
4

12
126

335
146

10

31
39
10

2,837

371
45

323
1

10

173
464

79
169

16

265.5

5.3

5.7

10.1
7.7

4.6

4.5

1.0

1.9
2.4
4.0

2.4
2.9

8.0

3.5
5.0

1.3
2.0

1.3
15.3

3.7
3.8

3.0
1.0
1.7

2.7

3.1
3.8
6.5
2.3

4.1

8
6

19
5

25
125

4
7
4
0
2

24

13

21

0

21

9

6

94

66

5

50

1
4

25

77

12

17

4

21.8

35

46

34

42

29

38

100
58

80

0

40

55

31

50

0

88

47

75

51

65

42

47

100
67
38
51
57
65
57

46.4

speedup on selected benchmark codes from the Perfect Club and SPEC92

benchmark suites.

The first column identifies the application. The second column gives the

number of constants propagated. The third column gives the number of clones

created. The last column gives the percent speedup over the same code

compiled with constant propagation and procedure cloning turned off. Proce-

dure inlining was turned off in both cases. The codes were run on a CONVEX

C3240 vector processor.

These codes are small and offer relatively little opportunity for interproce-

dural optimization. The results understate the benefits of these optimizations

as seen in real applications. In those cases where the percent change was less

than 1 percent, it is listed as O.

6. CONCLUSIONS

We have compiled nearly 2,000,000 lines of scientific and engineering

FORTRAN code and analyzed the availability of interprocedurally propa-
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Table X. Benchmark Speedup

Total Total

constants clones Percent

Application propagated created speedup

Perfect AP 29 6 0

Perfect LG 13 5 0

Perfect LW 127 1 3

Perfect MT 24 1 0

Perfect NA 26 6 2

Perfect OC 4 1 0

Perfect SD 71 8 0

Perfect SM 151 13 0
Perfect SR 34 2 0

Perfect TF 24 1 0
Perfect WS 110 18 13.4

SPEC92 doduc 226 10 2.3

SPEC92 fpppp 75 2 0
SPEC92 hydro2d 70 3 0
SPEC92 mdljdp2 138 35 0
SPEC92 mdljsp2 64 36 0
SPEC92 su2cor 299 30 0

SPEC92 wave5 403 13 0

gated constants. We have shown that an aggressive constant propagation

algorithm, coupled with procedure cloning, will expose many global variables

and arguments that are constant on entry to a procedure. Application devel-

opers can write highly modular systems that refer to values symbolically,

rather than literally, confident in the knowledge that compiler technology can

optimize their code effectively.
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