
Engineering An Interprocedural Optimizing Compiler

Jon Loeliger

Robert Metzger

CONVEX Computer Corporation

���� Waterview Parkway

Richardson� Texas ���������	

April� 	

�

Abstract

CONVEX Computer Corp� has developed a language�independent interprocedural optimizer
that is now available to users of its C�Series supercomputers� This optimizer is packaged together
with FORTRAN and C compilers in a product called the Application Compiler� This product
was developed to enable engineers and scientists to develop supercomputer applications that
run faster and that take less e�ort to optimize and debug�

The project goals were increased automatic optimization� language�independent optimiza�
tion� I�O device independence� application independence� co�existence with current development
tools� reasonable compilation speed� and ease of use�

The interprocedural analyzer performs call analysis� alias analysis� pointer tracking� scalar
analysis� constant propagation� inline analysis� clone analysis� array analysis� storage optimiza�
tion� and error analysis� The execution order of the algorithms is basically name binding�
side e�ect analysis� and optimization� The order of the algorithms changed during the imple�
mentation based upon user input and insights into the relationships between the algorithms�
Signi�cant changes were made to the user interface during the project� based upon input from
early users�

Introduction

There were three main reasons the Application Compiler was developed� Each of them were based
on the needs of technical computing users�

Scientists and engineers use supercomputers because they enable them to solve real�world prob�
lems in less time than other means might provide� Thus the �rst reason for this product was to
make applications execute faster� Some supercomputer users leverage faster application execution
into more jobs run� while others increase the size of the data sets they are processing� In either case�
they are enabled to do their job more e�ectively� Interprocedural analysis increases the information
the procedure compiler has� thus enabling it to do more optimizations�

The second reason for this product was to enable supercomputer users to develop applications
more quickly� Supercomputer users are not generally computer scientists� but professionals who use
computers to get their jobs done� Such users want to minimize the time they must spend preparing
an application� If the compiler does optimizations automatically that they would otherwise have to
do manually� they can spend their time solving problems in their discipline� rather than pro�ling and
modifying their programs� Compilers that do interprocedural analysis decrease development time in
several ways� They preserve the modular structure of an application� reducing design and integration
time� They make applications run faster� reducing the time needed to run tests� They �nd errors
that procedure compilers don�t �nd� thus reducing debugging time and increasing application quality�

�



The third reason this product was developed was to provide a bridge to future massively parallel
architectures� These systems o�er the promise of great performance� but we have found that most
engineers and scientists who use high performance computers are unwilling to endure the pain of
recoding their application to make use of such parallelism� The Application Compiler provides a
base�level technology to support automatic data decomposition for parallel processing� E	cient use
of parallel processors requires knowledge of the entire application� not just a single procedure�

Project Goals

The basic purpose of this project was to provide a compiler that performed interprocedural analysis
for optimization� The speci�c project goals were developed by examining the existing research
projects 
�� 
�� 

� 
�� in interprocedural analysis� After considering the needs of our customers�
we chose seven goals� each of which di�ered in varying degrees from the approaches taken by the
research projects�

These major project goals are explained below�

Automatic Optimization

Most interprocedural research projects have required the user to interact with the compiler and
environment� We knew that a system that required hours of interactive use to achieve better
performance would be ignored by most of our users� We decided to continue in the direction that
we have achieved success with until now � to provide maximum automatic optimization�

Language Independent Optimization

Almost all interprocedural research projects have only handled FORTRAN code� While almost all
CONVEX customer systems have licensed the FORTRAN compiler� two thirds of them have licensed
the optimizing C compiler� and several dozen have licensed the Ada compiler� All three compilers
perform automatic vectorization and parallelization� We decided we must meet the needs of all our
customers�

I�O Device Independence

Most interprocedural research projects have required the user to work at relatively expensive bit�
mapped graphics workstations� Many organizations that use supercomputers have a large investment
in traditional ASCII terminals� They expect our software products to support those devices� We
decided that our interprocedural optimizer must work equally well whether the user is logged in at
a glass teletype or an X�Windows workstation�

Application Independence

Most interprocedural research projects have focused on �nding high�level parallelism� This approach
did not make sense to us for two reasons� First� most of our customers have either our �rst�generation
vector processor �C��� or have our second�generation vector�parallel processor �C�� in a minimal
con�guration � one CPU� Second� we knew that several interprocedural techniques held great promise
for improving vector and scalar application performance� We decided that we must not limit our
optimizations to those that would help only applications that were inherently parallelizable� Instead
we would improve a wide range of applications including those that were inherently vectorizable or
inherently scalar�only�

Co�existence with Current Development Tools

Almost all interprocedural research projects have been part of a larger software development envi�
ronment� Software development environments include proprietary source editors� revision control

�



systems� debuggers� pro�lers� etc� Many users have an emotional attachment to the editor they
currently use� We did not want to have to proselytize for followers of a new editor� We decided
to exclude the following features from this product� syntax�directed editor� revision control system�
Symbolic debugger� execution pro�ler�

Reasonable Compilation Speed

Many interprocedural research projects have used algorithms that terminate in a reasonable time
only for small programs� No matter how much we improve the compilation speeds of our existing
compilers� users always ask us to make them faster� We decided that we would not bring a product
to the marketplace unless compile times for large applications were measured in hours� not days�

Easy to Learn

All new compilation systems require some learning by the user� User interfaces to unfamiliar products
are easier to learn when they are patterned after a familiar product� Since most UNIX�tm� users
are familiar with the make utility� we decided to pattern the user interface of our compiler after it�

Architecture of the Compiler

The Application Compiler consists of a number of executables and data �les� The compilation
process is controlled by the single executable� build� It both manages the execution of the other
compiler passes and serves as the user interface to the Application Compiler�

The compilation process centers around the �program data base�� It is a memory mapped shared
disk �le that contains intermediate representation of the application and results of the analyses� It
also contains information used to coordinate the compilation process� Each phase communicates
with other phases via the program data base�

Figure � shows the execution control and data �ow within the entire Application Compiler� A
brief synopsis of each executable is given below in the order in which they are executed�

Application Compiler driver � build is the program the user invokes� It performs Source
Analysis to determine which �les must be recompiled� It initializes the program database�

Language driver � The build driver invokes the fc and cc programs� They are similar to the
drivers used by the regular CONVEX FORTRAN and C compilers� They process command line
options� resolve library pathnames� and invoke the preprocessors as needed�

Language front end � �ront and cfront are the FORTRAN and C front ends respectively�
They perform lexical� syntactic� and semantic analysis� They also perform procedure�wide scalar
optimization� and then write symbol tables and annotated syntax trees to the program data base�

IPO Pass � � synth� is the �rst interprocedural optimization �IPO� analysis phase� It performs
some interprocedural error checking� call analysis� alias analysis� and pointer tracking� It reads from
the program data base� and writes additional information back to it�

Procedure Analysis � mend performs procedure�wide scalar optimization a second time� using
the results of the �rst pass of interprocedural analysis� It reads symbol tables� syntax trees� and
interprocedural information from the data base� and writes data structures needed by the second
pass of interprocedural analysis back to the data base�

IPO Pass � � synth� is the second interprocedural optimization analysis phase� It performs
interprocedural scalar analysis� constant propagation� array analysis� clone analysis� inline analysis
and error analysis� It reads from the program data base� and writes additional information back to
it�

Back end � bend performs procedure�wide scalar optimization a third time� using the results
of the second pass of interprocedural analysis� Then it performs vectorization� parallelization� and
code generation� It reads from the program data base and writes object �les to disk�

Linker � The Application Compiler always produces one object �le for each procedure� regardless
of the original source �le structure� The procedures are put into an order that maximizes locality






of reference within memory pages and the instruction cache� The standard CONVEX OS linker� ld�
creates an executable image from libraries and object �les created by the compiler back end�

Interprocedural Analysis and Optimization

Interprocedural analysis and optimization is a series of passes over a database that contains infor�
mation about all the procedures in the application� Interprocedural analysis is performed to provide
precise information in situations where traditional compilers make worst�case assumptions�

Traditional compilers make the following assumptions�

� Any procedure can be the referent of an indirect call�

� No argument of a FORTRAN procedure is aliased with another argument� or with a COMMON
variable� if the argument is assigned�

� Any location in memory can be pointed at by a C pointer�

� All global scalars and all by�reference scalar arguments are used and assigned by a called
procedure�

� All elements of all global arrays and all elements of by�reference array arguments are used and
assigned by a called procedure�

Interprocedural analysis provides a procedure compiler with precise information so that it doesn�t
have to make unrealistic assumptions� This makes it possible to perform more optimizations�

Interprocedural optimizations go beyond correcting worst�case assumptions to actually changing
the body of procedures� The interprocedural optimizations performed by this compiler were chosen
for two main reasons�

� to enhance the e�ectiveness of dependency analysis� and

� to enhance the usage of the memory hierarchy of high performance computers�

Array subscript dependency analysis is essential for e�ective optimization on high performance
computers� whether they be pipelined vector processors� massively parallel systems� or RISC work�
stations with large caches� All high performance computers use a memory hierarchy to increase
performance� E�ective use of the hierarchy is essential to good application performance�

The interprocedural passes are described below�
Call Analysis answers the question� Which procedures are invoked by a call� This would

seem to be a trivial problem� FORTRAN allows procedure dummy arguments� however� and C
provides for passing the addresses of functions that can be invoked by indirection� This means that
only interprocedural compilers can have complete knowledge of which procedures invoke which other
procedures� This pass also determines which library procedures are called� and generates information
about these procedures for the other passes�

Figure 
 shows an example where call analysis is needed� The function to be evaluated is passed
by reference as an argument� Call analysis will inspect every call to eval and determine the list of
procedures that can be called from eval�

Alias Analysis 
�� 
�� answers the question� Which names refer to the same location� It deter�
mines the aliases of all globals and of each formal of each procedure� The results of alias analysis
are used by the algorithms that follow to adjust for the e�ects of aliasing�

Figure � shows an example of the usefulness of alias analysis� The code shown is not valid
FORTRAN� The ANSI standard explicitly disallows making an assignment to a storage location
when there is more than one name for same location in a program unit� Optimizing compilers
simply assume that programmers obey this rule� In some cases� they can unwittingly generate
incorrect code� For example� this code will be vectorized by some vectorizing FORTRAN compilers�
even though they should not� The Application Compiler will �nd the alias and warn about it�

�



Pointer Tracking 
�� answers the question� Which pointers point to which locations� Pointer
Tracking improves the optimization of�CW procedures� Without it� a safe optimizing C compiler
must assume that any pointer can point at any location in memory that contains the appropriate
pointee type� Such assumptions lead to crippling aliases that decrease automatic vectorization and
parallelization of C� Pointer tracking distinguishes pointer targets symbolically and by storage class
�static� automatic� heap�� Providing an aggressive pointer tracking algorithm was essential to our
goal of providing language�independent optimization�

Figure � provides an example of how interprocedural pointer tracking helps optimization� A
vectorizing C compiler cannot safely vectorize the loop in the subfunction without knowing where
in memory the pointers point� An interprocedural compiler which performs pointer tracking knows
that the arguments of this function never point at the same location� and thus it is safe to vectorize
the loop�

Scalar Analysis 
�� 
�� answers the question� Which procedures �and subordinates� use and
assign which scalars� Scalar Analysis summarizes for every procedure call the usage of every scalar
by that procedure and every procedure it invokes directly or indirectly� Such references are classi�ed
according to whether the variable may be used �USE�� may be assigned �ASG�� or is de�nitely
assigned �KILL��

Figure � contains an example which shows why scalar analysis is helpful� A procedure compiler
must assume that all global variables are modi�ed by a procedure call� In the example� the results
of scalar analysis enable an interprocedural optimizer to substitute the constant ��� for the variable
a in the assignment to c� It knows that the called procedure does not set the value of the variable
a� so it still has the constant value after the subroutine completes� The assignment statement can
now be evaluated at compile time� and the multiply is eliminated from the code�

Constant Propagation 
��� 
��� answers the question� Which globals and arguments are always
constant on entry to which procedures� This algorithm performs a symbolic interpretation of the
program to �nd constants arising from static initializations� assignments� and argument passing�

Figure � is an example of how interprocedural constant propagation can aid other optimizations�
In the absence of information about the argument m a vectorizing compiler cannot vectorize the
loop contained in the subroutine� In an interprocedural compiler� constant propagation determines
that the argument always has the value ���� and substitutes this into the subroutine� With this
additional information� the compiler can vectorize this loop�

Inline Analysis answers the question� Which procedures should be inlined at which call sites�
Inline substitution serves two purposes� It eliminates call overhead and tailors the called procedure
to the particular set of arguments passed at a given call site� Procedure inlining can be performed
manually� and some existing compilers will perform inline expansion if the user manually speci�es
the calls to replace� Providing a fully automatic inlining system helped achieve our goal of automatic
optimization�

Inline analysis chooses procedures based on size� The smaller the procedure� the larger the
percentage of its execution is call overhead� and the greater the bene�t of inlining� Inline analysis
chooses call sites based on frequency of execution� Call overhead on CONVEX C�series systems is low
enough that it is not worth eliminating unless the call is in a loop �directly or indirectly�� By selecting
call sites that are executed most frequently� inline analysis removes barriers to parallelization from
those loops that will provide the greatest gain if executed concurrently�

Clone Analysis answers the question� Which procedures would bene�t by absorbing a constant
on entry� Cloning a procedure results in a version of the callee procedure that has been tailored to
one or more speci�c call sites where certain variables are known to be constant on entry�

Figure � shows how procedure cloning assists constant propagation� which in turn makes other
optimizations possible� In the absence of information about the arguments n and k� a vectorizing
compiler cannot vectorize the loop contained in the subroutine� In an interprocedural compiler�
procedure cloning determines that if a copy was made of the subroutine� then constant values for
both arguments could be propagated� After the copy is made� �� is substituted for the argument k
in the original� and � is substituted in the copy� With this additional information� the compiler can

�



vectorize this loop�
Array Analysis 
�� 
��� answers the question� Which procedures �and subordinates� use and

assign which sections of arrays� The primary reason for array analysis is to make parallelization of
loops that contain procedure calls possible� If each invocation of a procedure in a loop processes a
di�erent section of an array� then that loop may be a candidate for parallel execution�

Array Analysis summarizes for every procedure call the usage of every array used or assigned
by that procedure and every procedure it invokes directly or indirectly� Dependency analysis in the
vectorizer�parallelizer can use the array summaries to determine whether there are any loop carried
dependencies in the loop� that would prevent parallelization� The results of Array Analysis can also
be used to partition data on massively parallel distributed memory systems�

Figure � gives an example of array section analysis� Compilers which do not perform interpro�
cedural analysis cannot automatically parallelize loops that contain subroutine calls� In this case�
array analysis summarizes the side e�ects of the call as A�I��������	 This means that each
invocation assigns elements one through one hundred of column I of the array A� Since each iteration
of the loop is processing an independent section of the array� the loop in the main program can be
run in parallel�

Storage Optimization answers the question� How should application data structures be re�
arranged to improve the usage of the memory hierarchy� On a system with banks of interleaved
memory� it is important to ensure that arrays are structured so that the elements are spread over
the banks� This can be accomplished by extending the dimensions of the arrays where necessary�
if it is safe to do this� The results of alias and array analysis provide the information to make this
decision�

On a system with data cache lines that contain more than one word� it can be quite useful to
group related scalar variables together� When one of them is fetched into the cache� the others come
along for free� and subsequent loads of these variables come from the cache� not main memory�

Error Analysis answers questions such as� Which procedures use uninitialized variables� Which
procedures have array references which may have invalid subscripts�

The cloning and inlining algorithms typify application independent optimizations� Both inline
and clone analysis modify a procedure to the use at a particular call site� The resulting code bene�ts
from a full range of optimizations� Procedure cloning is designed to yield better vectorization� but
we often see a scalar bene�t from dead code removal or new constants available� Procedure inlining
can result in both new vectorizable loops as well as the expected scalar bene�t of call overhead
removal� We cover a wide range of application types and still see improvements without relying on
any one speci�c type of optimization�

Algorithm Execution Order

A combination of user feedback� experience� and technical necessity suggested a di�erent order of
execution for the interprocedural algorithms than was envisioned in the design document� The graph
in Figure � shows a partial ordering between the interprocedural algorithms� There is an arc from
one algorithm to another if the �rst algorithm produces information that can be used by the second�

For simplicity� this graph does not show all the ordering arcs� Each of the interprocedural analysis
algorithms relies on an accurate call graph for the entire application� Without the call graph� there
is no way to propagate information from one procedure to another� Thus� the call analysis must be
performed early in the interprocedural analysis�

The �rst three interprocedural analyses to be executed � call analysis� alias analysis� and pointer
tracking � perform di�erent aspects of name binding� This is the process of determining to which
procedure or variable a symbol refers in any given context� For example� call analysis determines
indirect call targets and enables the creation of a complete call graph�

Alias analysis and pointer tracking conceptually perform the same name binding functional�
ity� Alias analysis tracks the aliases created when using the pass�by�reference calling semantics of
FORTRAN� It determines memory overlaps for all symbols in an application� Pointer tracking was

�



implemented to handle the name binding caused by taking addresses of variables� and allocating
memory on the heap in C� It determines re�ned target sets for indirections�

Clone analysis was originally placed before call analysis� but was later placed after constant
propagation� When we designed the Application Compiler� we knew that there would be a classic
catch��� between the clone analysis and constant propagation� For clone analysis to be e�ective�
it must know what constants can be propagated� For constant propagation to be e�ective� it must
know all the routines� including the clones� to which it could propagate a constant�

To break the dependency each algorithm had on the other� we originally de�ned clone analysis as
a heuristic process that would precede call analysis� It would make guesses about which procedures
to clone so that the call graph could be completed� In this way� constant propagation would �nd
and propagate constants into the extant clones at the correct place in the call graph�

In practice� it was di	cult to know beforehand what were good candidates for cloning� Once
constant propagation was coded� it was clear from the available constant sets what the possible
clones were� Choosing good clones was then a separate matter of performance tuning� The decision
to move clone analysis from an early heuristic to a later more certain algorithm was easy to make�

In a few instances� the algorithms could be executed in several possible orders� In some of these
cases� early feedback from users of the compiler enabled us to make informed choices on algorithm
ordering decisions�

A good example of this ordering decision is the interaction between inline and clone analysis�
When cloning was developed� it was an integral part of constant propagation� When inlining was
coded it occurred after constant propagation and thus� after cloning� Both user preference and
technical reasons led to the separation of clone analysis from constant propagation�

Empirically� users saw better improvements with inlining than with cloning and thus wanted
inlining to override cloning� Technically� since an inline copy of a procedure both eliminated the call
overhead and tailored the callee�s code more thoroughly to a call site than a simple cloning� it made
sense to have inlining override cloning� Thus we chose to do inline analysis before clone analysis�
separating clone analysis from constant propagation�

User Interface

Two primary design goals that applied to the user interface of the Application Compiler are to be
I�O device independent and easy to learn�

To maintain I�O device independence� we decided that the Application Compiler should not be
an interactive program� Instead� all input comes from command line options and a �le that describes
the composition of the application� All output for the user is directed to the terminal�

The user calls the Application Compiler through the build program� The build program is
analogous to make� It speci�es from what an application is to be built and how the application is
to be built� Just as make reads the speci�cation from the �le make�le or Make�le command line
option� build reads the speci�cation from the �le build�le or Build�le�

The build program recognizes numerous command line options� For familiarity and easy of
learning� several make options are recognized by build� In addition� build has several options to
control the compilation and output that are speci�c to the Application Compiler�

Unlike make� the build�le does not specify dependencies between source �les� These are deduced
automatically and do not require any user intervention�

The build�le grammar is simple� The build�le can contain any of the lines in Figure �� in any
order� The link line must occur at least once� All others can occur any number of times�

Specifying a directory name tells the build program to compile all the FORTRAN and C source
�les found in that directory with the compiler options speci�ed�

The �rst build�le in Figure �� su	ces for many applications� We believe this basic user interface
is simple and easy to learn� In this example� all the �les in the current directory will be compiled
at optimization level �O� and linked using the FORTRAN libraries�

Although this example represents one of the simplest build�les� more complex build�les for more
complex cases are also easy to make and understand�

�



The second build�le in Figure �� shows how to make exceptions to a general rule� Here� all the
�les in �mnt�me�application are compiled at �O�� For some reason �le foo�f should be compiled at
�O� instead of �O�� Furthermore a simple macro is used to provide many �ags for all source �les�

The options used on the command line can be embedded directly in the build�le� This simpli�es
the user�s build command and records how an application was compiled� The third build�le in Figure
�� uses these features�

The Application Compiler summarizes the compilation process in a �nal report written to the
terminal� This report consists of two tables� both having one row for each procedure compiled�
The �rst table shows the interprocedural optimizations performed� The second table shows the
interprocedural errors diagnosed� A line at the bottom of each table shows which build option to
use to see details about a given column of a table�

The Application Compiler user interface was patterned after already existing tools where possible�
in order to make it easier to learn and use� Much of the compilation process was simpli�ed and
automated� The output was kept minimal and concise� yet details are made available when necessary�

Mid�Course Corrections

At various points in the development process� we discovered problems that forced us to reconsider
aspects of the original design� These problems ranged from design problems to coding problems�
Most of these problems were not clear or present until well into the development of the Application
Compiler and required us to perform some mid�course corrections�

The largest mid�course correction made during the implementation of the Application Compiler
was the realization that one interprocedural pass was not su	cient for e�ective optimization� Con�
ceptually� only one pass is needed� �rst look at every routine and gather the necessary procedural
data� synthesize all the data in one interprocedural pass� and �nally use the synthesized data to
compile each routine�

However� to obtain the desired automatic and language independent optimizations� it was neces�
sary to split the synthesis pass into two distinct passes� The �rst pass would handle the name�binding
mentioned above� The second pass would handle the side�e�ect analyses and optimizations�

The motivation for splitting the name�binding analyses into an early interprocedural pass was
better procedural analysis� Having identi�ed more precisely to what a symbol in a procedure refers�
the procedure analysis step can be done much more accurately� Dereferenced pointers now have
known target sets� almost all aliases in the application have been exposed� and indirect calls have
been resolved�

Having performed the initial name binding interprocedural pass� a more optimistic analysis can
be made of each procedure as the basis for the interprocedural algorithms� The interprocedural
algorithms are signi�cantly more accurate� and better optimizations are made�

By completing the name binding at an early stage in the interprocedural optimization process� we
satis�ed the goal of language independent optimization� The procedure analysis no longer needed to
be sensitive to the source language and each interprocedural algorithm in the second pass operated
independently of the original source language� This abstraction also enabled the compilation of a
single application that was written in multiple languages�

The original means of storing the syntax tree information in the program data base consumed too
much space� Although this was a probable outcome discussed in the design document� a simplistic
approach was taken initially for speed and simplicity� The major problem with space in the program
data base was quickly traced to the syntax trees and a compression algorithm was implemented�
This algorithm was speci�c to the data set present in the syntax tree� and yielded an approximately
���� compression ratio�

During integration testing� we found that the code resolving references to library functions was
taking a large part of the time used the Application Compiler� As originally coded� a simple approach
was taken� every time a reference is made to a procedure that is not in the user�s code� simply search
for it in the libraries� This proved to be slow� Instead� one list of unde�ned procedures was created

�



and resolved by a one pass search through the libraries� The execution time for the library resolution
became negligible�

As mentioned earlier� cloning was originally coded as part of constant propagation� The rela�
tionship between inlining and these algorithms caused us to separate them so that inlining could
occur between them�

The original design document identi�ed the need for libraries to be �annotated�� This annotation
characterizes the behavior of the procedures that participate in an application but are not available
for direct source code analysis� Many aspects of this task were underestimated in the original design�
We underestimated the number of libraries that would need annotation to accommodate a reasonable
set of user applications� Some of the libraries� like libc� needed to be more thoroughly annotated
than originally anticipated� Additional information was needed in the annotations to accommodate
newer algorithms as they were introduced into the compilation process� To simplify the original
hand�generated annotations for libraries� a method of automatic annotation generation using the
Application Compiler itself was later developed�

The original design document incorporated a version of pointer tracking� However� it was a
very simplistic algorithm that operated solely on knowledge of addressed variables and treated all
memory dereferences equally� Mid�way through the implementation of the other interprocedural
algorithms� several de�ciencies were noticed that were directly attributable an ine�ective pointer
tracking algorithm� This forced a reconsideration of the pointer tracking algorithm and a subsequent
complete rewrite�

The pointer tracking algorithm was then rewritten to be more e�ective and thorough� Each
pointer was considered independently� and a partially �ow�sensitive algorithm was developed� We
obtained the results necessary to support the other interprocedural algorithms� However� we discov�
ered that on large applications� we missed our goal of reasonable compilation speed�

Large applications took days to compile� Pointer tracking was rewritten again� The new algo�
rithm was completely �ow�insensitive� yet yielded results that were acceptable in practice� and took
minutes to perform�

Conclusions

When developing the Application Compiler� we found that we were able to keep our original goals
and use them to guide our design decisions� We believe that we will be able to use and follow the
same goals for further development of the Application Compiler�

User input was critical to building the user interface� Most of the build�le commands� source
directives� and command�line options were implemented as a direct result of user suggestions and
requests�

User feedback also made a major impact on how we analyzed� handled� and reported application
errors� The �rst release treated more than twice as many errors in the application code as fatal errors
as the �nal product did� Our users pressed us to remove restrictions on programming practices which
were not standard�conforming but that occurred frequently in real applications� They also asked
for� and received� a rationale they could understand for those practices which we had to treat as
fatal errors�

User reaction to the error checking facilities of the Application Compiler was an unexpected
surprise� An interprocedural compiler must do extra checking that standard compilers don�t� The
side e�ect of this is that the compiler can be used simply to �nd bugs� In some cases� customers
perceived the value of this checking to be greater than the optimizations performed�

The performance of the system has been quite acceptable� We originally promised our manage�
ment that it would run no more than �� times slower than our standard procedure compilers for
the same languages� In fact� it runs about 
 times slower� and most of the additional time is spent
in I�O� reading and writing the database� In practice� all of the interprocedural algorithms scale
linearly�

�



We compiled a large computational �uid dynamics code that contained ������� source lines in ���
source �les� There were ����� calls inlined� ��� procedures cloned� and ����� constants propagated�
The following performance statistics �wall clock time� were obtained on a CONVEX C�
��� with
���Mb of memory�

Compile Time by Phase
Compiler phase HH�MM�SS
BUILD ��������
FFRONT ��������
type checking ��������
call analysis ��������
alias analysis ��������
MEND ���
����
scalar analysis ����
���
constant propagation ����
���
inline analysis ��������
clone analysis ��������
array analysis ����
���
error checking ��������
BEND ��������
LINK ������
�
Total ��������

The �rst release of the product is now in use by dozens of customer sites� The Application
Compiler provides the basis for future optimizations for new supercomputer architectures being
developed at CONVEX�

Acknowledgements

Randall Mercer developed the initial design for the interprocedural optimizer� The �nal design
and implementation of the interprocedural optimizer were done by the authors� Sean Stroud� Mark
Seligman� and Matthew Diaz� Ken Kennedy at Rice University pioneered this �eld and gave us
helpful advice� Our managers at

CONVEX � Presley Smith� Frank Marshall� and Steve Wallach � believed we could make it work
and gave us the time and resources to do so�

References


�� F� Allen� M� Burke� P� Charles� R� Cytron� and J� Ferrante� An overview of the

PTRAN analysis system for multiprocessing� in Proceedings of the ���� International Confer�
ence on Supercomputing� Springer�Verlag� �����


�� D� Callahan� K� Cooper� R� Hood� K� Kennedy� and L� Torczon� ParaScope� A

Parallel Programming Environment� The International Journal of Supercomputer Applications�
Vol� �� No� �� Winter �����



� C� Polychronopoulos� M� Girkar� M� Haghighat� C� Lee� B� Leung� and D�

Schouten� The Structure of Parafrase	�� an Advanced Parallelizing Compiler for C and For	

tran� in Languages and Compilers for Parallel Computing� pp� ��
����� MIT Press� �����


�� K� Smith and W� Appelbe� PAT 
 an interactive Fortran parallelizing assistant tool� in
Proceedings of ���� International Conference on Parallel Processing� Vol� �� pp� ������ �����

��




�� K� Cooper� Analyzing Aliases of Reference Formal Parameters� in Proceedings of the ��th
ACM Symposium on Principles of Programming Languages� pp� �������� �����


�� J� Banning� An e�cient way to �nd the side e�ects of procedure calls and the aliases of

variables� in Proceedings of the �th ACM Symposium on Principles of Programming Languages�
pp� �����
�� �����


�� J� Loeliger�R� Metzger� M� Seligman� and S� Stroud� Interprocedural Pointer Tracking�
An Empirical Study� in Proceedings of Supercomputing ���� pp� ������


�� K� Cooper and K� Kennedy� Interprocedural side	e�ect analysis in linear time� in Proceed�
ings of SIGPLAN ��� Conference on Programming Language Design and Implementation� pp�
������ �����


�� M� Burke� An interval
based approach to exhaustive and incremental interprocedural data�ow

analysis� in ACM Transactions on Programming Languages and Systems� Vol� ��� No� 
� pp�

������ July �����


��� D� Callahan� K� Cooper� K� Kennedy� and L� Torczon� Interprocedural Constant Prop	
agation� in Proceedings of SIGPLAN ��� Symposium on Compiler Construction� pp� ��������
�����


��� M� Wegman and F� Zadeck� Constant Propagation with Conditional Branches� in ACM
Transactions on Programming Languages and Systems� vol� �
� no��� pp� �������� April �����


��� R� Metzger and S� Stroud� Interprocedural Constant Propagation� An Empirical Study�

ACM Letters on Programming Languages and Systems vol ��� no� ���� Mar�Dec ���
�


�
� V� Balasundaram and K� Kennedy� A technique for summarizing data access and its use in

parallelism enhancing transformations� in Proceedings of the ACM SIGPLAN ���� Conference
on Programming Languages Design and Implementation� pp� ����
� �����


��� D� Callahan and K� Kennedy� Analysis of Interprocedural Side E�ects in a Parallel Pro	

gramming Environment� in Journal of Parallel and Distributed Computing� Vol� �� pp� ��������
�����


��� P� Havlak and K� Kennedy� Interprocedural analysis of array side e�ects� an implementa	

tion� in Proceedings of Supercomputing ���� pp� �������� �����

��



Language

Program
Database

Source
Files

Object
file

Other
objects

Profile 
data

IPO
Pass 2

Procedure
Analysis

IPO
Pass 1

Language
Front End

Driver

Buildfile

Back end

Linker

Executable

Build

Libraries

Figure �� Compiler Architecture

��



Analysis

Array
Analysis

Clone
Analysis

Storage
Optimization

Inline
Analysis

Error

Constant
Propagation

Scalar 
Analysis

Alias
Analysis

Pointer
Analysis

Call
Analysis

Figure �� Partial Ordering of Algorithms

subroutine eval�f�x�y�n�

external f

real f�x�
��y�
�

integer i�n

do i � ��n

y�i� � f�x�i��

enddo

end

Figure 
� Call Analysis

�




program main

real x�����

do i� �����

x�i� � float�i�

enddo

call foo�x����x�������

print 
�x����x����

end

subroutine foo�x�y�n�

real x�
��y�
�

integer i�n

do i� ��n

x�i� � y�i� 
 ��

enddo

end

Figure �� Alias Analysis

char 
malloc���

double static�������

main��

�

double automatic�������

double 
p�

p � �double 
�malloc����
sizeof�double���

foo�static��automatic�������

�

foo�p�q�r�n�

double 
p� 
q� 
r�

int n�

�

int i�

for� i��� i�n� 

i �


p

 � 
q

 � 
r

�

�

Figure �� Pointer Tracking

��



program main

common a�b�c�d�e�f

read 
�d�e�f

a � �	�

call foo�d�e�f�

c � a 
 ��	�

print 
�c

end

subroutine foo�x�y�z�

x � y 
 z

end

Figure �� Scalar Analysis

program main

parameter�n�����m�����

real u�����

call sub�u�m�n�

end

subroutine sub�a�m�n�

real a�
�

integer m�n

do i � ��n

a�i� � a�i
m�

enddo

end

Figure �� Constant Propagation

program main

parameter�n�����m�����

real u�����

call sub�u�m�n�

end

subroutine sub�a�m�n�

real a�
�

integer m�n

do i � ��n

a�i� � a�i
m�

enddo

end

Figure �� Constant Propagation

��



program main

real a�����

call foo�a��������

call foo�a�������

end

subroutine foo�x�n�k�

real x�n�

do i � ��n

x�i� � x�i
k�

enddo

end

Figure �� Clone Analysis

program main

real a���������

do i � �����

call foo�a�����i�

enddo

end

subroutine foo�x�m�i�

real x�m�m�

do j � ��m

x�i�j� � �	�

enddo

end

Figure ��� Array Section Analysis

��


