Engineering An Interprocedural Optimizing Compiler

Jon Loeliger
Robert Metzger

CONVEX Computer Corporation
3000 Waterview Parkway
Richardson, Texas 75083-3851

April, 1994

Abstract

CONVEX Computer Corp. has developed a language-independent interprocedural optimizer
that is now available to users of its C-Series supercomputers. This optimizer is packaged together
with FORTRAN and C compilers in a product called the Application Compiler. This product
was developed to enable engineers and scientists to develop supercomputer applications that
run faster and that take less effort to optimize and debug.

The project goals were increased automatic optimization, language-independent optimiza-
tion, I/O device independence, application independence, co-existence with current development
tools, reasonable compilation speed, and ease of use.

The interprocedural analyzer performs call analysis, alias analysis, pointer tracking, scalar
analysis, constant propagation, inline analysis, clone analysis, array analysis, storage optimiza-
tion, and error analysis. The execution order of the algorithms is basically name binding,
side effect analysis, and optimization. The order of the algorithms changed during the imple-
mentation based upon user input and insights into the relationships between the algorithms.
Significant changes were made to the user interface during the project, based upon input from
early users.

Introduction

There were three main reasons the Application Compiler was developed. Each of them were based
on the needs of technical computing users.

Scientists and engineers use supercomputers because they enable them to solve real-world prob-
lems in less time than other means might provide. Thus the first reason for this product was to
make applications execute faster. Some supercomputer users leverage faster application execution
into more jobs run, while others increase the size of the data sets they are processing. In either case,
they are enabled to do their job more effectively. Interprocedural analysis increases the information
the procedure compiler has, thus enabling it to do more optimizations.

The second reason for this product was to enable supercomputer users to develop applications
more quickly. Supercomputer users are not generally computer scientists, but professionals who use
computers to get their jobs done. Such users want to minimize the time they must spend preparing
an application. If the compiler does optimizations automatically that they would otherwise have to
do manually, they can spend their time solving problems in their discipline, rather than profiling and
modifying their programs. Compilers that do interprocedural analysis decrease development time in
several ways. They preserve the modular structure of an application, reducing design and integration
time. They make applications run faster, reducing the time needed to run tests. They find errors
that procedure compilers don’t find, thus reducing debugging time and increasing application quality.

The third reason this product was developed was to provide a bridge to future massively parallel
architectures. These systems offer the promise of great performance, but we have found that most
engineers and scientists who use high performance computers are unwilling to endure the pain of
recoding their application to make use of such parallelism. The Application Compiler provides a
base-level technology to support automatic data decomposition for parallel processing. Efficient use
of parallel processors requires knowledge of the entire application, not just a single procedure.

Project Goals

The basic purpose of this project was to provide a compiler that performed interprocedural analysis
for optimization. The specific project goals were developed by examining the existing research
projects [1] [2] [3] [4] in interprocedural analysis. After considering the needs of our customers,
we chose seven goals, each of which differed in varying degrees from the approaches taken by the
research projects.

These major project goals are explained below.

Automatic Optimization

Most, interprocedural research projects have required the user to interact with the compiler and
environment. We knew that a system that required hours of interactive use to achieve better
performance would be ignored by most of our users. We decided to continue in the direction that
we have achieved success with until now — to provide maximum automatic optimization.

Language Independent Optimization

Almost all interprocedural research projects have only handled FORTRAN code. While almost all
CONVEX customer systems have licensed the FORTRAN compiler, two thirds of them have licensed
the optimizing C compiler, and several dozen have licensed the Ada compiler. All three compilers
perform automatic vectorization and parallelization. We decided we must meet the needs of all our
customers.

I/0 Device Independence

Most, interprocedural research projects have required the user to work at relatively expensive bit-
mapped graphics workstations. Many organizations that use supercomputers have a large investment
in traditional ASCII terminals. They expect our software products to support those devices. We
decided that our interprocedural optimizer must work equally well whether the user is logged in at
a glass teletype or an X-Windows workstation.

Application Independence

Most interprocedural research projects have focused on finding high-level parallelism. This approach
did not make sense to us for two reasons. First, most of our customers have either our first-generation
vector processor (C1), or have our second-generation vector-parallel processor (C2) in a minimal
configuration — one CPU. Second, we knew that several interprocedural techniques held great promise
for improving vector and scalar application performance. We decided that we must not limit our
optimizations to those that would help only applications that were inherently parallelizable. Instead
we would improve a wide range of applications including those that were inherently vectorizable or
inherently scalar-only.

Co-existence with Current Development Tools

Almost all interprocedural research projects have been part of a larger software development envi-
ronment. Software development environments include proprietary source editors, revision control

systems, debuggers, profilers, etc. Many users have an emotional attachment to the editor they
currently use. We did not want to have to proselytize for followers of a new editor. We decided
to exclude the following features from this product: syntax-directed editor, revision control system,
Symbolic debugger, execution profiler.

Reasonable Compilation Speed

Many interprocedural research projects have used algorithms that terminate in a reasonable time
only for small programs. No matter how much we improve the compilation speeds of our existing
compilers, users always ask us to make them faster. We decided that we would not bring a product
to the marketplace unless compile times for large applications were measured in hours, not days.

Easy to Learn

All new compilation systems require some learning by the user. User interfaces to unfamiliar products
are easier to learn when they are patterned after a familiar product. Since most UNIX(tm) users
are familiar with the make utility, we decided to pattern the user interface of our compiler after it.

Architecture of the Compiler

The Application Compiler consists of a number of executables and data files. The compilation
process is controlled by the single executable, build. It both manages the execution of the other
compiler passes and serves as the user interface to the Application Compiler.

The compilation process centers around the “program data base”. It is a memory mapped shared
disk file that contains intermediate representation of the application and results of the analyses. It
also contains information used to coordinate the compilation process. Each phase communicates
with other phases via the program data base.

Figure 1 shows the execution control and data flow within the entire Application Compiler. A
brief synopsis of each executable is given below in the order in which they are executed.

Application Compiler driver - build is the program the user invokes. It performs Source
Analysis to determine which files must be recompiled. It initializes the program database.

Language driver - The build driver invokes the fc and cc programs. They are similar to the
drivers used by the regular CONVEX FORTRAN and C compilers. They process command line
options, resolve library pathnames, and invoke the preprocessors as needed.

Language front end - ffront and cfront are the FORTRAN and C front ends respectively.
They perform lexical, syntactic, and semantic analysis. They also perform procedure-wide scalar
optimization, and then write symbol tables and annotated syntax trees to the program data base.

IPO Pass 1 - synthl is the first interprocedural optimization (IPO) analysis phase. It performs
some interprocedural error checking, call analysis, alias analysis, and pointer tracking. It reads from
the program data base, and writes additional information back to it.

Procedure Analysis - mend performs procedure-wide scalar optimization a second time, using
the results of the first pass of interprocedural analysis. It reads symbol tables, syntax trees, and
interprocedural information from the data base, and writes data structures needed by the second
pass of interprocedural analysis back to the data base.

IPO Pass 2 - synth2 is the second interprocedural optimization analysis phase. It performs
interprocedural scalar analysis, constant propagation, array analysis, clone analysis, inline analysis
and error analysis. It reads from the program data base, and writes additional information back to
it.

Back end - bend performs procedure-wide scalar optimization a third time, using the results
of the second pass of interprocedural analysis. Then it performs vectorization, parallelization, and
code generation. It reads from the program data base and writes object files to disk.

Linker - The Application Compiler always produces one object file for each procedure, regardless
of the original source file structure. The procedures are put into an order that maximizes locality

of reference within memory pages and the instruction cache. The standard CONVEX OS linker, Id,
creates an executable image from libraries and object files created by the compiler back end.

Interprocedural Analysis and Optimization

Interprocedural analysis and optimization is a series of passes over a database that contains infor-

mation about all the procedures in the application. Interprocedural analysis is performed to provide

precise information in situations where traditional compilers make worst-case assumptions.
Traditional compilers make the following assumptions:

e Any procedure can be the referent of an indirect call.

e No argument of a FORTRAN procedure is aliased with another argument, or with a COMMON
variable, if the argument is assigned.

e Any location in memory can be pointed at by a C pointer.

e All global scalars and all by-reference scalar arguments are used and assigned by a called
procedure.

e All elements of all global arrays and all elements of by-reference array arguments are used and
assigned by a called procedure.

Interprocedural analysis provides a procedure compiler with precise information so that it doesn’t
have to make unrealistic assumptions. This makes it possible to perform more optimizations.

Interprocedural optimizations go beyond correcting worst-case assumptions to actually changing
the body of procedures. The interprocedural optimizations performed by this compiler were chosen
for two main reasons:

e to enhance the effectiveness of dependency analysis, and
e to enhance the usage of the memory hierarchy of high performance computers.

Array subscript dependency analysis is essential for effective optimization on high performance
computers, whether they be pipelined vector processors, massively parallel systems, or RISC work-
stations with large caches. All high performance computers use a memory hierarchy to increase
performance. Effective use of the hierarchy is essential to good application performance.

The interprocedural passes are described below.

Call Analysis answers the question: Which procedures are invoked by a call? This would
seem to be a trivial problem. FORTRAN allows procedure dummy arguments, however, and C
provides for passing the addresses of functions that can be invoked by indirection. This means that
only interprocedural compilers can have complete knowledge of which procedures invoke which other
procedures. This pass also determines which library procedures are called, and generates information
about these procedures for the other passes.

Figure 3 shows an example where call analysis is needed. The function to be evaluated is passed
by reference as an argument. Call analysis will inspect every call to eval and determine the list of
procedures that can be called from eval.

Alias Analysis [5] [6] answers the question: Which names refer to the same location? It deter-
mines the aliases of all globals and of each formal of each procedure. The results of alias analysis
are used by the algorithms that follow to adjust for the effects of aliasing.

Figure 4 shows an example of the usefulness of alias analysis. The code shown is not valid
FORTRAN. The ANSI standard explicitly disallows making an assignment to a storage location
when there is more than one name for same location in a program unit. Optimizing compilers
simply assume that programmers obey this rule. In some cases, they can unwittingly generate
incorrect code. For example, this code will be vectorized by some vectorizing FORTRAN compilers,
even though they should not. The Application Compiler will find the alias and warn about it.

Pointer Tracking [7] answers the question: Which pointers point to which locations? Pointer
Tracking improves the optimization of(CW procedures. Without it, a safe optimizing C compiler
must assume that any pointer can point at any location in memory that contains the appropriate
pointee type. Such assumptions lead to crippling aliases that decrease automatic vectorization and
parallelization of C. Pointer tracking distinguishes pointer targets symbolically and by storage class
(static, automatic, heap). Providing an aggressive pointer tracking algorithm was essential to our
goal of providing language-independent optimization.

Figure 5 provides an example of how interprocedural pointer tracking helps optimization. A
vectorizing C compiler cannot safely vectorize the loop in the subfunction without knowing where
in memory the pointers point. An interprocedural compiler which performs pointer tracking knows
that the arguments of this function never point at the same location, and thus it is safe to vectorize
the loop.

Scalar Analysis [8] [9] answers the question: Which procedures (and subordinates) use and
assign which scalars? Scalar Analysis summarizes for every procedure call the usage of every scalar
by that procedure and every procedure it invokes directly or indirectly. Such references are classified
according to whether the variable may be used (USE), may be assigned (ASG), or is definitely
assigned (KILL).

Figure 6 contains an example which shows why scalar analysis is helpful. A procedure compiler
must assume that all global variables are modified by a procedure call. In the example, the results
of scalar analysis enable an interprocedural optimizer to substitute the constant 5.0 for the variable
a in the assignment to c. It knows that the called procedure does not set the value of the variable
a, so it still has the constant value after the subroutine completes. The assignment statement can
now be evaluated at compile time, and the multiply is eliminated from the code.

Constant Propagation [11] [12] answers the question: Which globals and arguments are always
constant on entry to which procedures? This algorithm performs a symbolic interpretation of the
program to find constants arising from static initializations, assignments, and argument passing.

Figure 7 is an example of how interprocedural constant propagation can aid other optimizations.
In the absence of information about the argument m a vectorizing compiler cannot vectorize the
loop contained in the subroutine. In an interprocedural compiler, constant propagation determines
that the argument always has the value 200, and substitutes this into the subroutine. With this
additional information, the compiler can vectorize this loop.

Inline Analysis answers the question: Which procedures should be inlined at which call sites?
Inline substitution serves two purposes: It eliminates call overhead and tailors the called procedure
to the particular set of arguments passed at a given call site. Procedure inlining can be performed
manually, and some existing compilers will perform inline expansion if the user manually specifies
the calls to replace. Providing a fully automatic inlining system helped achieve our goal of automatic
optimization.

Inline analysis chooses procedures based on size. The smaller the procedure, the larger the
percentage of its execution is call overhead, and the greater the benefit of inlining. Inline analysis
chooses call sites based on frequency of execution. Call overhead on CONVEX C-series systems is low
enough that it is not worth eliminating unless the call is in a loop (directly or indirectly). By selecting
call sites that are executed most frequently, inline analysis removes barriers to parallelization from
those loops that will provide the greatest gain if executed concurrently.

Clone Analysis answers the question: Which procedures would benefit by absorbing a constant
on entry? Cloning a procedure results in a version of the callee procedure that has been tailored to
one or more specific call sites where certain variables are known to be constant on entry.

Figure 8 shows how procedure cloning assists constant propagation, which in turn makes other
optimizations possible. In the absence of information about the arguments n and k, a vectorizing
compiler cannot vectorize the loop contained in the subroutine. In an interprocedural compiler,
procedure cloning determines that if a copy was made of the subroutine, then constant values for
both arguments could be propagated. After the copy is made, -1 is substituted for the argument &
in the original, and 1 is substituted in the copy. With this additional information, the compiler can

vectorize this loop.

Array Analysis [2] [15] answers the question: Which procedures (and subordinates) use and
assign which sections of arrays? The primary reason for array analysis is to make parallelization of
loops that contain procedure calls possible. If each invocation of a procedure in a loop processes a
different section of an array, then that loop may be a candidate for parallel execution.

Array Analysis summarizes for every procedure call the usage of every array used or assigned
by that procedure and every procedure it invokes directly or indirectly. Dependency analysis in the
vectorizer /parallelizer can use the array summaries to determine whether there are any loop carried
dependencies in the loop, that would prevent parallelization. The results of Array Analysis can also
be used to partition data on massively parallel distributed memory systems.

Figure 9 gives an example of array section analysis. Compilers which do not perform interpro-
cedural analysis cannot automatically parallelize loops that contain subroutine calls. In this case,
array analysis summarizes the side effects of the call as A(I,1:100)=. This means that each
invocation assigns elements one through one hundred of column I of the array A. Since each iteration
of the loop is processing an independent section of the array, the loop in the main program can be
run in parallel.

Storage Optimization answers the question: How should application data structures be re-
arranged to improve the usage of the memory hierarchy? On a system with banks of interleaved
memory, it is important to ensure that arrays are structured so that the elements are spread over
the banks. This can be accomplished by extending the dimensions of the arrays where necessary,
if it is safe to do this. The results of alias and array analysis provide the information to make this
decision.

On a system with data cache lines that contain more than one word, it can be quite useful to
group related scalar variables together. When one of them is fetched into the cache, the others come
along for free, and subsequent loads of these variables come from the cache, not main memory.

Error Analysis answers questions such as: Which procedures use uninitialized variables? Which
procedures have array references which may have invalid subscripts?

The cloning and inlining algorithms typify application independent optimizations. Both inline
and clone analysis modify a procedure to the use at a particular call site. The resulting code benefits
from a full range of optimizations. Procedure cloning is designed to yield better vectorization, but
we often see a scalar benefit from dead code removal or new constants available. Procedure inlining
can result in both new vectorizable loops as well as the expected scalar benefit of call overhead
removal. We cover a wide range of application types and still see improvements without relying on
any one specific type of optimization.

Algorithm Execution Order

A combination of user feedback, experience, and technical necessity suggested a different order of
execution for the interprocedural algorithms than was envisioned in the design document. The graph
in Figure 2 shows a partial ordering between the interprocedural algorithms. There is an arc from
one algorithm to another if the first algorithm produces information that can be used by the second.

For simplicity, this graph does not show all the ordering arcs. Each of the interprocedural analysis
algorithms relies on an accurate call graph for the entire application. Without the call graph, there
is no way to propagate information from one procedure to another. Thus, the call analysis must be
performed early in the interprocedural analysis.

The first three interprocedural analyses to be executed — call analysis, alias analysis, and pointer
tracking — perform different aspects of name binding. This is the process of determining to which
procedure or variable a symbol refers in any given context. For example, call analysis determines
indirect call targets and enables the creation of a complete call graph.

Alias analysis and pointer tracking conceptually perform the same name binding functional-
ity. Alias analysis tracks the aliases created when using the pass-by-reference calling semantics of
FORTRAN. It determines memory overlaps for all symbols in an application. Pointer tracking was

implemented to handle the name binding caused by taking addresses of variables, and allocating
memory on the heap in C. It determines refined target sets for indirections.

Clone analysis was originally placed before call analysis, but was later placed after constant
propagation. When we designed the Application Compiler, we knew that there would be a classic
catch-22 between the clone analysis and constant propagation. For clone analysis to be effective,
it must know what constants can be propagated. For constant propagation to be effective, it must
know all the routines, including the clones, to which it could propagate a constant.

To break the dependency each algorithm had on the other, we originally defined clone analysis as
a heuristic process that would precede call analysis. It would make guesses about which procedures
to clone so that the call graph could be completed. In this way, constant propagation would find
and propagate constants into the extant clones at the correct place in the call graph.

In practice, it was difficult to know beforehand what were good candidates for cloning. Once
constant propagation was coded, it was clear from the available constant sets what the possible
clones were. Choosing good clones was then a separate matter of performance tuning. The decision
to move clone analysis from an early heuristic to a later more certain algorithm was easy to make.

In a few instances, the algorithms could be executed in several possible orders. In some of these
cases, early feedback from users of the compiler enabled us to make informed choices on algorithm
ordering decisions.

A good example of this ordering decision is the interaction between inline and clone analysis.
When cloning was developed, it was an integral part of constant propagation. When inlining was
coded it occurred after constant propagation and thus, after cloning. Both user preference and
technical reasons led to the separation of clone analysis from constant propagation.

Empirically, users saw better improvements with inlining than with cloning and thus wanted
inlining to override cloning. Technically, since an inline copy of a procedure both eliminated the call
overhead and tailored the callee’s code more thoroughly to a call site than a simple cloning, it made
sense to have inlining override cloning. Thus we chose to do inline analysis before clone analysis,
separating clone analysis from constant propagation.

User Interface

Two primary design goals that applied to the user interface of the Application Compiler are to be
I/0 device independent and easy to learn.

To maintain I/O device independence, we decided that the Application Compiler should not be
an interactive program. Instead, all input comes from command line options and a file that describes
the composition of the application. All output for the user is directed to the terminal.

The user calls the Application Compiler through the build program. The build program is
analogous to make. It specifies from what an application is to be built and how the application is
to be built. Just as make reads the specification from the file makefile or Makefile command line
option, build reads the specification from the file buildfile or Buildfile.

The build program recognizes numerous command line options. For familiarity and easy of
learning, several make options are recognized by build. In addition, build has several options to
control the compilation and output that are specific to the Application Compiler.

Unlike make, the buildfile does not specify dependencies between source files. These are deduced
automatically and do not require any user intervention.

The buildfile grammar is simple. The buildfile can contain any of the lines in Figure 10 in any
order. The link line must occur at least once. All others can occur any number of times.

Specifying a directory name tells the build program to compile all the FORTRAN and C source
files found in that directory with the compiler options specified.

The first buildfile in Figure 11 suffices for many applications. We believe this basic user interface
is simple and easy to learn. In this example, all the files in the current directory will be compiled
at optimization level -O2 and linked using the FORTRAN libraries.

Although this example represents one of the simplest buildfiles, more complex buildfiles for more
complex cases are also easy to make and understand.

The second buildfile in Figure 11 shows how to make exceptions to a general rule. Here, all the
files in /mnt/me/application are compiled at -O2. For some reason file foo.f should be compiled at
-01 instead of -O2. Furthermore a simple macro is used to provide many flags for all source files.

The options used on the command line can be embedded directly in the buildfile. This simplifies
the user’s build command and records how an application was compiled. The third buildfile in Figure
11 uses these features.

The Application Compiler summarizes the compilation process in a final report written to the
terminal. This report consists of two tables, both having one row for each procedure compiled.
The first table shows the interprocedural optimizations performed. The second table shows the
interprocedural errors diagnosed. A line at the bottom of each table shows which build option to
use to see details about a given column of a table.

The Application Compiler user interface was patterned after already existing tools where possible,
in order to make it easier to learn and use. Much of the compilation process was simplified and
automated. The output was kept minimal and concise, yet details are made available when necessary.

Mid-Course Corrections

At various points in the development process, we discovered problems that forced us to reconsider
aspects of the original design. These problems ranged from design problems to coding problems.
Most of these problems were not clear or present until well into the development of the Application
Compiler and required us to perform some mid-course corrections.

The largest mid-course correction made during the implementation of the Application Compiler
was the realization that one interprocedural pass was not sufficient for effective optimization. Con-
ceptually, only one pass is needed: first look at every routine and gather the necessary procedural
data, synthesize all the data in one interprocedural pass, and finally use the synthesized data to
compile each routine.

However, to obtain the desired automatic and language independent optimizations, it was neces-
sary to split the synthesis pass into two distinct passes. The first pass would handle the name-binding
mentioned above. The second pass would handle the side-effect analyses and optimizations.

The motivation for splitting the name-binding analyses into an early interprocedural pass was
better procedural analysis. Having identified more precisely to what a symbol in a procedure refers,
the procedure analysis step can be done much more accurately. Dereferenced pointers now have
known target sets; almost all aliases in the application have been exposed; and indirect calls have
been resolved.

Having performed the initial name binding interprocedural pass, a more optimistic analysis can
be made of each procedure as the basis for the interprocedural algorithms. The interprocedural
algorithms are significantly more accurate, and better optimizations are made.

By completing the name binding at an early stage in the interprocedural optimization process, we
satisfied the goal of language independent optimization. The procedure analysis no longer needed to
be sensitive to the source language and each interprocedural algorithm in the second pass operated
independently of the original source language. This abstraction also enabled the compilation of a
single application that was written in multiple languages.

The original means of storing the syntax tree information in the program data base consumed too
much space. Although this was a probable outcome discussed in the design document, a simplistic
approach was taken initially for speed and simplicity. The major problem with space in the program
data base was quickly traced to the syntax trees and a compression algorithm was implemented.
This algorithm was specific to the data set present in the syntax tree, and yielded an approximately
12:1 compression ratio.

During integration testing, we found that the code resolving references to library functions was
taking a large part of the time used the Application Compiler. As originally coded, a simple approach
was taken: every time a reference is made to a procedure that is not in the user’s code, simply search
for it in the libraries. This proved to be slow. Instead, one list of undefined procedures was created

and resolved by a one pass search through the libraries. The execution time for the library resolution
became negligible.

As mentioned earlier, cloning was originally coded as part of constant propagation. The rela-
tionship between inlining and these algorithms caused us to separate them so that inlining could
occur between them.

The original design document identified the need for libraries to be “annotated”. This annotation
characterizes the behavior of the procedures that participate in an application but are not available
for direct source code analysis. Many aspects of this task were underestimated in the original design.
We underestimated the number of libraries that would need annotation to accommodate a reasonable
set of user applications. Some of the libraries, like libe, needed to be more thoroughly annotated
than originally anticipated. Additional information was needed in the annotations to accommodate
newer algorithms as they were introduced into the compilation process. To simplify the original
hand-generated annotations for libraries, a method of automatic annotation generation using the
Application Compiler itself was later developed.

The original design document incorporated a version of pointer tracking. However, it was a
very simplistic algorithm that operated solely on knowledge of addressed variables and treated all
memory dereferences equally. Mid-way through the implementation of the other interprocedural
algorithms, several deficiencies were noticed that were directly attributable an ineffective pointer
tracking algorithm. This forced a reconsideration of the pointer tracking algorithm and a subsequent
complete rewrite.

The pointer tracking algorithm was then rewritten to be more effective and thorough. Each
pointer was considered independently, and a partially flow-sensitive algorithm was developed. We
obtained the results necessary to support the other interprocedural algorithms. However, we discov-
ered that on large applications, we missed our goal of reasonable compilation speed.

Large applications took days to compile. Pointer tracking was rewritten again. The new algo-
rithm was completely flow-insensitive, yet yielded results that were acceptable in practice, and took
minutes to perform.

Conclusions

When developing the Application Compiler, we found that we were able to keep our original goals
and use them to guide our design decisions. We believe that we will be able to use and follow the
same goals for further development of the Application Compiler.

User input was critical to building the user interface. Most of the buildfile commands, source
directives, and command-line options were implemented as a direct result of user suggestions and
requests.

User feedback also made a major impact on how we analyzed, handled, and reported application
errors. The first release treated more than twice as many errors in the application code as fatal errors
as the final product did. Our users pressed us to remove restrictions on programming practices which
were not standard-conforming but that occurred frequently in real applications. They also asked
for, and received, a rationale they could understand for those practices which we had to treat as
fatal errors.

User reaction to the error checking facilities of the Application Compiler was an unexpected
surprise. An interprocedural compiler must do extra checking that standard compilers don’t. The
side effect of this is that the compiler can be used simply to find bugs. In some cases, customers
perceived the value of this checking to be greater than the optimizations performed!

The performance of the system has been quite acceptable. We originally promised our manage-
ment that it would run no more than 10 times slower than our standard procedure compilers for
the same languages. In fact, it runs about 3 times slower, and most of the additional time is spent
in I/0, reading and writing the database. In practice, all of the interprocedural algorithms scale
linearly.

We compiled a large computational fluid dynamics code that contained 214,500 source lines in 971
source files. There were 1,576 calls inlined, 221 procedures cloned, and 1,774 constants propagated.
The following performance statistics (wall clock time) were obtained on a CONVEX C-3220 with
256Mb of memory.

Compile Time by Phase

Compiler phase HH:MM:SS
BUILD 00:00:01
FFRONT 00:46:50
type checking 00:00:10
call analysis 00:00:29
alias analysis 00:02:28
MEND 00:38:16
scalar analysis 00:03:55
constant propagation 01:53:14
inline analysis 00:00:06
clone analysis 00:01:18
array analysis 00:43:51
error checking 00:00:51
BEND 01:14:22
LINK 00:00:32
Total 05:26:29

The first release of the product is now in use by dozens of customer sites. The Application
Compiler provides the basis for future optimizations for new supercomputer architectures being
developed at CONVEX.

Acknowledgements

Randall Mercer developed the initial design for the interprocedural optimizer. The final design
and implementation of the interprocedural optimizer were done by the authors, Sean Stroud, Mark
Seligman, and Matthew Diaz. Ken Kennedy at Rice University pioneered this field and gave us
helpful advice. Our managers at

CONVEX — Presley Smith, Frank Marshall, and Steve Wallach — believed we could make it work
and gave us the time and resources to do so.

References

[1] F. ALLEN, M. BURKE, P. CHARLES, R. CYTRON, AND J. FERRANTE, An overview of the
PTRAN analysis system for multiprocessing, in Proceedings of the 1987 International Confer-
ence on Supercomputing, Springer-Verlag, 1987.

[2] D. CaLLanaN, K. Cooper, R. Hoop, K. KENNEDY, AND L. TORCZON, ParaScope: A
Parallel Programming Environment, The International Journal of Supercomputer Applications,

Vol. 2, No. 4, Winter 1988.

[3] C. PoLYCHRONOPOULOS, M. GIRKAR, M. HacgHigHAaT, C. LEE, B. LEUNG, AND D.
SCHOUTEN, The Structure of Parafrase-2: an Advanced Parallelizing Compiler for C and For-
tran, in Languages and Compilers for Parallel Computing, pp. 423-451, MIT Press, 1990.

[4] K. SMITH AND W. APPELBE, PAT — an interactive Fortran parallelizing assistant tool, in
Proceedings of 1988 International Conference on Parallel Processing, Vol. 2, pp. 58—62, 1988.

10

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

K. COOPER, Analyzing Aliases of Reference Formal Parameters, in Proceedings of the 12th
ACM Symposium on Principles of Programming Languages, pp. 281-290, 1985.

J. BANNING, An efficient way to find the side effects of procedure calls and the aliases of
variables, in Proceedings of the 6th ACM Symposium on Principles of Programming Languages,
pp. 724-736, 1979.

J. LOELIGER,R. METZGER, M. SELIGMAN, AND S. STROUD, Interprocedural Pointer Tracking:
An Empirical Study, in Proceedings of Supercomputing '91, pp. 14-21.

K. CooPER AND K. KENNEDY, Interprocedural side-effect analysis in linear time, in Proceed-
ings of SIGPLAN ’88 Conference on Programming Language Design and Implementation, pp.
57-66, 1988.

M. BURKE, An interval-based approach to exhaustive and incremental interprocedural dataflow
analysis, in ACM Transactions on Programming Languages and Systems, Vol. 12, No. 3, pp.
341-95, July 1990.

D. CarrauAN, K. CoOPER, K. KENNEDY, AND L. TORCZON, Interprocedural Constant Prop-
agation, in Proceedings of SIGPLAN 86 Symposium on Compiler Construction, pp. 152-161,
1986.

M. WEGMAN AND F. ZADECK, Constant Propagation with Conditional Branches, in ACM
Transactions on Programming Languages and Systems, vol. 13, no.2, pp. 181-210, April 1991.

R. METZGER AND S. STROUD, Interprocedural Constant Propagation: An Empirical Study,
ACM Letters on Programming Languages and Systems vol 2., no. 1-4, Mar—Dec 1993.

V. BALASUNDARAM AND K. KENNEDY, A technique for summarizing data access and its use in
parallelism enhancing transformations, in Proceedings of the ACM SIGPLAN 1989 Conference
on Programming Languages Design and Implementation, pp. 41-53, 1989.

D. CALLAHAN AND K. KENNEDY, Analysis of Interprocedural Side Effects in a Parallel Pro-
gramming Environment, in Journal of Parallel and Distributed Computing, Vol. 5, pp. 517-550,
1988.

P. HavLAK AND K. KENNEDY, Interprocedural analysis of array side effects: an implementa-
tion, in Proceedings of Supercomputing ’90, pp. 952-960, 1990.

11

Language
Driver
Source
Files anguage
Front End
IPO
Pass 1
Buildfile
Procedure
Analysis
Program
Database
IPO
Pass 2
Back end -
Object
file
Libraries
Other
objects
Profile
data Executable

Figure 1: Compiler Architecture

12

subroutine eval(f,x,y,n)
external f

real f,x(*),y(*)

integer i,n

doi=1,n

y(i) = £(x(i))
enddo
end

Call

Analysis
Alias Pointer
Analysis Analysis
Scalar
Analysis
Constant
Propagation
Inline Clone Array .
Analysis Analysis | Analysis |
Storage Error
Optimization Analysis

Figure 2: Partial Ordering of Algorithms

Figure 3: Call Analysis

13

program main
real x(100)

do i= 1,100
x(1) = float(i)
enddo

call foo(x(2),x(1),99)
print *,x(1),x(99)
end

subroutine foo(x,y,n)
real x(*),y(*)
integer i,n

do i= 1,n

x(1) = y(i) + 10
enddo
end

Figure 4: Alias Analysis

char *malloc();
double static1[200];

main()

{
double automatic1[200];
double *p;

p = (double *)malloc(200*sizeof (double));
foo(staticl,automatic1,200);

}

foo(p,q,r,n)
double *p, *q, *r;
int n;

{

int 1i;
for(i=0; i<n; ++i)
*p+t+ = *q++ — *r++;

3

Figure 5: Pointer Tracking

14

program main
common a,b,c,d,e,f

read *,d,e,f

a =5.0

call foo(d,e,f)
c =a=x 10.0
print *,c

end

subroutine foo(x,y,z)
X=y +z
end

Figure 6: Scalar Analysis

program main
parameter (n=100,m=200)
real u(500)

call sub(u,m,n)

end

subroutine sub(a,m,n)
real a(x)
integer m,n
doi=1,n

a(i) = a(i+m)
enddo
end

Figure 7: Constant Propagation

program main
parameter (n=100,m=200)
real u(500)

call sub(u,m,n)

end

subroutine sub(a,m,n)
real a(x)
integer m,n
doi=1,n

a(i) = a(i+m)
enddo
end

Figure 8: Constant Propagation

15

program main
real a(200)

call foo(a,200,-1)
call foo(a,200,1)
end

subroutine foo(x,n,k)
real x(n)

do i =
x(i)

enddo

i,n
= x(i+k)

end

Figure 9: Clone Analysis

program main
real a(100,100)

do i = 1,100

call foo(a,100,1i)
enddo
end

subroutine foo(x,m,1i)
real x(m,m)

do j =1
x(i,3)
enddo

,
= 0.0

end

Figure 10: Array Section Analysis

16

