
Pointer Target Tracking - An Empirical Study

Jon Loeliger, Robert Metzger, Mark Seligman, Sean Stroud

CONVEX Computer Corporation

Abstract

CONVEX Computer Corp. has developed a

language-independent interprocedural optimizer that is

now available to users of its C-series supercomputers.

This paper documents the benefits of one particular

feature of that optiwu”zer, pointer target tracking.

This paper surveys the structure of the interpro-

cedural optimizer and the goals of pointer target track-

ing. It describes the realities of scientific codes that had

to be handled, and gives an overview of the algorithms

used. It also provides detailed statistics on the oppor-

tunities for pointer tracking, the characteristics of

pointer ranges, and the bene)ts to optimization of

pointer tracking.

Introduction

CONVEX Computer Corp. has developed a
language-independent interprocedura.t optimizer, which

is now available to users of its C-series supercomputers.

This optimizer is packaged together with existing CON-

VEX compilers in a product called the Application

Compiler.

Currently, the Application Compiler processes pro-

grams containing FORTRAN and C source cede. The

FORTRAN ffont end accepts ANSI Standard source

(ANSI X3.9-1978). It provides a high degree of compa-

tibility with the extensions made by DEC or Cray, at the

user’s option. The C front end accepts ANSI Standard

source (ANSI X3. 159- 1989). It also provides optional

compatibility with common usage C.
The driver program for the Application Compiler

determines which source files need to be (recompiled,

and applies the appropriate front end to all such source

files. The front end performs lexical analysis, parsing,

and semantic analysis. It writes to disk the symbol table,

annotated parse tree, and miscellaneous information for

each procedure.

After all source files that need to be. (recompiled

have been processed, the driver invokes the interpro-

cedural optimizer. The following analyses, which

answer the questions shown, are performed as listed.

Interprocedural Call Analysis -

Which procedures are invoked by each call?

Interprocedural Alias Analysis -

Which names refer to the same location?

Interprocedural Pointer Tracking -

Which pointers point to which locations?

Interprocedural Scalar Analysis -

Which procedures (and subordinates) use and

assign which scalars?

Interprocedural Constant Propagation -

Which globals and formals are constant

on entry to which procedures?

Inline Analysis -

Which procedures should be inlined

at which call sites?

Interprocedural Array Analysis -

Which procedures (and subordinates) use and

assign which sections of arrays?

Each analysis algorithm reads from the program data-

base and writes the information it generates back to that

database.

After the interprocedural algorithms have completed,

the driver program invokes the CONVEX common

back end for each procedure in the application. The

back end consists of a machine-independent optimizer

and a machine-dependent code generator. In the Appli-

cation Compiler, the optimizer has been modified to

make use of information gathered by interprocedural

analysis, rather than make worst-case assumptions

about procedwe side-effects.
The optimizer first performs the following

proeedure-seope scalar optimization:

Constant propagation and folding

Redundant-assignment and -use elimination

Useless code elimination
Common subexpression elimination

Invariant code motion

Opemtor strength reduction

Induction value optimization

14
@ 1991 A.CM 0-89791 -459-7/’91/0014 $01.50

Then it performs automatic

Ielization:

Dependency analysis

Loop Distribution

Loop Interchange
Partial vectorization

vectorization and paral-

Conditional vectorization

Parallelization

The code generator is table-driven and supports

several similar architectures. The CONVEX C2
instruction set is an extension of the C 1 instruction Seg

and there are other differences such as instruction tim-

ings.

The code generator performs the following machine

dependent transformations:

After

Instruction selection

Register allocation

Instruction scheduling

Peephole optimization

Object generation

the backend has processed all procedures, the

Application Compiler driver invokes the linker, which

creates an executable image from the generated objects.

Applying tracked pointers

Languages which permit liberal use of pointers, such

as C and C++, pose special problems for writers of

optimizing compilers. Because the language syntax

does not specify, at a given use, where a pointer may

point, the compiler writer often assumes the worst casa

a pointer may point anywhere. Such “worst case”

assumptions may severely restrict the amount of optimi-

zation that can be done.

In the absence of semantic information, a compiler

must assume that a pointer may target any addressed

variable in the program. When compiling an individual

function, without knowledge of the rest of the program,

this pessimistic estimate must include not only variables

known to have been addressed, but also all globals: a

global’s address may be taken in another function and

assigned to a pointer. With minimal interprocedural

analysis this burden can be lightened somewhati all

addressed globals will be known, perhaps shrinking a

pointer’s set of possible targets.

These simple syntactical observations, however, do

not provide a sufficient basis for performing aggressive

automatic optimization. If the compiler could deter-
mine, for example, that a pointer was not aliased to an
assignment made through a cast, it would know that the

pointer and its target were of the same data typq this

would relax the worst case assumption to all addressed

variables of that data type. If, similarly, the compiler

could determine that all assignments reaching a use of a

pointer were from addressed variables, the less pes-

simistic assumption would then limit the range to just

those variables. Pointer tracking uses just such informa-

tion to limit the range of aliases a pointer may have.

The approach to pointer tracking presented in this

paper is effective primarily for applications that traverse

blocks of memory using pointers, Such blocks maybe

allocated statically or on the stack as arrays, or dymmi-

crdly on the heap. Using pointers to process blocks of
homogeneous numeric data is the distinguishing charac-

teristic of scientific and engineering applications written

in C. This style of programming differs greatly from

system software written in C, which typically process

recursive &ta structures such as lists, trees, and graphs.

Precise alias lists provide greater opportunity for

optimizing loops which process memory blocks. If a

loop contains two pointer dereferences, for example, the

compiIer no longer assumes that the two potentially

alias the same memory location. Aliases cause the com-

piler to assume them are loop-carried depen&ncies,

and when it can eliminate such dependencies, it can

vectorize and parallelize the loop.

Realities of scientfic C codes

Real applications used by scientists and engineers

present a number of challenges and problems to a com-

piler designer. This section describes some of the reali-

ties of scientific codes that make implementing pointer

tracking more interesting.

There are three aspects that C that make it less than

ideal for scient.Mc computing. [M89] The lack of j?oat

complex and double complex data types is the first prob-

lem. The most common solution is to define a structure

that contains the real and imaginary parts.

The semantics of argument passing, which prevent

compilers from assuming that pointer arguments aren’t

aliases (as in FORTRAN), is the second problem.

Without being able to make such assumptions, C com-

pilers must be very conservative in creating aliases

between pointer variables. This inevitably results in

poor automatic vectorization and parallelization, in the

absence of assistance from the user in the form of prag-

mas or command line options. This second problem

was one of the main motivations for implementing

interprocedural pointer tracking, Pointer tracking can

dettmnine whether two argument pointers could ever be

aliases, and if they can not be, it makes much more pre-
cise alias lists.

The third problem is in many ways the most serious

— the lack of a way to declare argument arrays that

have varying dimensions. FORTRAN has adjustable

15

and assume&size arrays, and Pascal has conformant

arrays. Legend has it that this feature was omitted from

the original design of C because it would have created

an incompatibility with the language BCPL. How

short-sighted!

The problem is stated very well in FFTV88] (p. 17):

“The systems programmer rarely deals with two-

dimensional arrays, and almost never deals with two-

dimensional arrays whose size is variable and known

only at run time. Such arrays are, however, the bread

and butter of scientific computing. Imagine trying to

live with a matrix inversion routine which could work

with only one size of matrix!”
The inevitable result of a significant omission from a

programming language is a lot of ugly hackery. C pro-

grammers have coped with the omission of varying-

dimension arrays in several ways. These include expli-

cit indexing, arrays of pointers, and array objects.

T’he first approach stores all multi-dimensional arrays

as vectors. A macro like the following is defined to

generate the address calculation code.

double *x:

#define SUB(i, j,c) (i)*(c)+(j)

*(x + SUB (i, j, m)) = 0.0;

The second approach uses vectors of pointers to

represent arrays with more than one dimension. First,

the vector of pointers is allocated, then the vectors that

contain actual data are allocated, as shown below.

double **X;

x = (double **) malloc (

N * sizeof (double *)) ;

x [i] = (double *) malloc (

N * sizeof (double)) ;

x[i] [j] = 0.0;

The obvious advantage of the second approach over

the first is that it uses the existing syntax of the language

for element references. It has several disadvantages.
1) Multiple hdirections introduce extra memory refer-

ences that reduce performance with many compilem and

architectures.

2) Extra storage is required for the pointers, and this can

become quite substantial when dealing with arrays of

more than two dimensions.

3) Assigning pointers into a vector whose own size is

likely to be indeterminate at compile-time presents

significant difficulties for a pointer tracking algorithm.

The third approach is to use structures to represent

array objects of different types. The structure contains

the dimensions of the array, and a pointer to the vector

containing the data.

typedef struct DBLMAT {

int rows, cols;

double *data;

} x;

X. COIS = N;

x.data = (double *) malloc (
N*N * sizeof (double)) ;

#define REF (x, i, j) x.data [j+i*x. colsl

REF (x, i, j) = 0.0;

There are two advantages of the third approach over

the first

1) Writing an element reference requires less effort,

reducing the likelihood of error.

2) The compiler automatically generates the code to

pass and use the column length field.

Both the first and third approaches are equally amen-

able to the pointer tmcking algorithm presented in this

paper. The second approach can obscure the flow of

pointers in the general case.

Description of the algorithm

Procedural pointer tracking

Pointer tracking is performed after the scalar optim-

izer has converted the input procedure into a graph

representation and has performed data-flow analysis on

it. Each basic block is represented as a directed acyclic

graph. Within basic blocks, &tafiow arcs connect

operators to opemnds. Use-definition arcs constrain the

order in which memory references occur. Basic block

DAG’s are the nodes in a control flow graph. Within

the control flow graph, arcs show possible control flow

between blocks and identify loop structures. The con-

trol flow graph is reducible and contains use-definition

information. Such information t.dls, for a given use of a
variable, what definitions of that variable have a path

that reaches the use.

Targets for use and assignment nodes are kept in a

data sfructure called a range, A pointer range is a set of

symlmls and a set of flags. The symbols are the names

of variables whose addresses are contained in the

pointer at some time. Speeial symbols are created dur-

ing interprocedural analysis for heap storage. The flags

indicate whether the range must be treated as a worst-

case target (anywhere) or whether the range may be

16

affected by the behavior of a procedure call.

The algorithm for tracking pointers in a procedure is
essentially the same both before and after interpro-

cedural (H?O) analysis has taken place. The differences

between the two schemes concern the ranges assigned

to formal and global pointers and how ranges are

revised by a call.

When a pointer is assigned from an expression

involving an addressed symbol, the assignment’s range

is set to that symbol. Assignments from expressions

involving a pointer receive the range of that pointer. A

use of a pointer receives as its range the union of the
ranges of all assignments reaching it.

Assignments made to a pointer ffom other expres-

sions, such as from an array or a pointer dereference are

not tracke@ they are identified as default instances.

Similarly, pointer uses that are reached by function calls

are identified as being affected by a call. In the absence

of interprocedural information these ranges are assigned

the default worst case. If inter-proceduml tracking has

taken place, though, there may be useful knowledge of

the effect of the call on the pointer’s range.

In either tracking pass, each node in the graph is
vkhed, Nodes representing assignments to or uses of

unsubscripted pointers have their range information set
as described above. If loops are present in the graph,

the nodes within each loop must be visited multiple

times to enable targets discovered in the loop to pro-

pagate to the loop head. Because the graph is reducible,

the algorithm visits each nested loop (loop depth + l)-

many times [ASU86].

As the first tracking pass begins there is no

knowledge of the ranges of either global or formal

pointer variables. Uses of these pointers which can be
reached from outside the procedme are therefore

assigned the default (worst-case) range. At the start of

the post-IPO tracking pros, however, the ranges for such

pointers me initialized using information gleaned from

the interprocedural pointer tracking. Post-IPG Iracking

passes, likewise, use range information for individual

calls. When tracking is complete, unsubscripted uses

and assignments of pointers are annotated with range

information.

For the purposes of dependence analysis, pointer

references are represented internally in the compiler as

subscripted references to a mythicrd array that

represents all of memory. For example *p = *q; is

represented as $MEM [*p 1 = $MEM [*q] ; Another

pass over the graph replaces each pointer dereference

by a dereference of a new variable corresponding to its
range.

The compiler creates new symbols to represent the

various combinations of aliasing encountered in the

ranges. For example, if some range is found to target

two distinct variables, a new symbol is made with those
two variables on its alias list. Clearly, the number of

combinations encountered may be large. The compiler

computes default symbols for those cases whose aliases

are all addressed variables of the pointer’s type or, if the

pointer haa been assigned the default (worst-case)

range, uses the symbol aliasing all addressed variables.

In the previous example, if the ranges of p and q can

be determined to be completely distinc~ the representa-

tion will change to $MEM1 [*PI = $MEM2 [*q] ;

When the dependence analyzer sees two may refer-
ences with different names, and no atiases between

them, it does not bother inspecting the subscripts since it
knows there can be no dependence. This results in

improved vectorization and parallelization.

Gn reentering the optimizer after interprocedttral

analysis, moreover, use-definition information is recom-

puted using the new alias variables. Because pointer

dereferences tend to have fewer aliases now, assign-

ments through a pointer tend to generate fewer new

definitions. This results in longer use-definition chains,

which makes possible

- better redundant-use and

redundant-assignment elimination,

- basic-block DAG’s with fewer constraints,

- longer life for values in registers.

Interprocedural pointer tracking

The interprocedural pointer tracking algorithm syn-

thesizes new target range sets using the initial pointer

ranges developed by the procedural pointer tracking

algorithm. For each function complete range sets are

determined for every global or formal pointer variable

referenced directly by the function or by any function it

calls dinxtly or indirectly.

The flrat phase of the interprocedural algorithm cOn-

verts all the ranges to refer to symbols in the program

symbol table, rather than the individurd function symbol

tables. It also cmu.es ranges for statically initialized

pointer variables that am associated with the main pro-

cedure.
The second phase of the interprocedural algorithm

inspects call sites and adds items to the ranges of argu-

ment pointer variables based upon the actual arguments

used. This phase also creates, for each function, a list of

pointer variables and functions that return pointers

whose ranges must be resolved.

The third phase converts all of the pointer ranges

associated with function calls and returns into a single

directed gmph. Nodes represent pointers and pointees,

arcs repnxxtt a binding between a pointer and an object

pointed at, or between formal and actual arguments.

17

The heart of the algorithm computes the transitive

closure of this reference graph. Once computed, the
resolved pointer ranges are constructexi, and associated

with two sets — ranges known on entry to each func-

tion, and ranges known on exit from each function.

The results of this algorithm have limitations. In par-

ticular, the range for a global variable on entry to a

function is shown as the union of all ranges associated

with that variable during the execution of all functions,

Originally this was implemented as an iterative algo-

rithm that gave exact results for global variables at each

call site. It was abandoned because it was far too slow

to prmess real applications. The resulting degradation

in optimization has been minimal, since most codes do

not use global pointers in vectorizable loops. The

current implementation does not handle more complex

memory tracking due to either array-of-pointer refer-

ences or multiple pointer dereferences.

Empirical studies

Assumptions

The application codes analyzed for this paper were

obtained from public domain sources and from CON-

VEX customers. The size of our published sample was

limited by the fact that there is much less scientific C

code available than scientific FORTRAN code, and by

privacy requirements of our customers.

To help isolate the effects of inteqmcedural pointer

tracking, all other intepocedural optirnizations were

disabled when the data in this paper were generated. In

practice, all of the interprocedural algorithms would be

enabled and the interprocedural pointer tracking would

only be a part of a much larger optimization effort.

As the LINALG code is a library, we cannot supply

statistics on it directly because there is no complete

application. Instead, we compiled 9 separate example

drivers that used the library. We extracted from the
library only those routines which were needed to com-

pile each of the examples independently. The figures

we present for this application are a mean of these 9

example applications. Statistics are shown for only

those routines of the library which are used somewhere

in one of the examples. There is some duplication of

the lower level routines from the library.

Two versions of the TRACE application are shown in

the data. The TRACE 1 application has its own imple-

mentation of a standard library memory allocation

scheme, directly providing the thee routines malloco,
realloco, and free{). The TRACE2 version uses the

memory management routines from the standard

library.

Applications

Table 1 provides general characteristics of the appli-

cations on which the effects of interprocedural pointer

tracking was studied

The first column of Table 1 gives an identifier for the

application and the type of the application. The second

column lists the total number of functions in the appli-

cation. The third column gives the total number of

source lines in the application. The last two columns

list the mean and maximum number of function calls

per procedure.

The codes range from 5 to 173 functions, with a

median of 23 functions. They range from 411 to 11442

source lines, with a median of931 lines. The maximum

number of calls per function ranges from 16 to 194.

This high number is largely atrnbutable to the fact that

in C input and output arc done through calls to functions

in libraries, rather than through features that are a part

of the language.

Opportunities for pointer tracking

The next two tables provide background information

on the opportunities for pointer tracking. Table 2 shows

potential pointer target data while Table 3 shows data

about the pointers themselves.
The iirst column of Table 2 identifies the application.

The second, third, and fourth columns give the total,

mean and maximum number of local arrays within a

function. The fifth column shows the total number of

global arrays within the entire application. The final

three columns characterize an additional target for

pointer tracking, showing the total, mean and maximum

number of calls to heap allocation routines.

The first column of Table 3 identities the application.

The following four columns list the mean and maximum

number of loud and argument pointer variables per pro-

cedure. The last column gives the number of global
pointer variables in the application.

The total number of local arrays ranges from 29 to

356, with a median of 45. The maximum number of

local arrays declared in any one function ranges from 8

to 99, with a median of 24. The total number of global

arrays ranges from 1 to 160, with a median of 5. The

total number of calls to library functions that allocate

storage from the heap ranged from O to 135, with a
median of 10.

The maximum number of local pointer variables in

any one function ranges from 1.9 to 22, with a median

of 10. The maximum number of argument pointer vari-

ables in any single function ranges from 4 to 13, with a

median of 4. The total number of global pointer vari-

ables mnges from O to 45, with a median of 8.

18

Pointer tracking effectiveness

The next two tables combined demonstrate the effec-

tiveness of the pointer tracking algorithm by contrasting

the same statistics obtained with and without interpro-

cedural pointer tracking.

Table 4 shows the effectiveness of determining to

which memory locations a pointer variable refers. The

fist column identifies the application. The seeond

column gives the total number of dereferences in the

application. The third and fourth columns give the

mean and maximum number of dereferences per pro-

cedure. The fifth column lists the total number of

aliases present at all dereferences. The next two

columns list the mean and maximum aliases present per

dereference. The final column lists the number of

dereferences that had exact ranges, e.g. those whose

target sets did not include the eanonieal worst-case tar-

get (anywhere).

Table 5 shows the same analysis using interpr~

cedural pointer tracking.

During the normal procedural compilation of a func-

tion, only the symbols named within a file are potential

aliases of a dereference. Using interproeedural infor-

mation causes the compiler to represent explicitly

program-wide aliases for each dereference.

Generally, an application has more global variables

than are named in any one source file of the application.

In many cases, a procedme compiler will assume that a

pointer is an alias for all the global variables that it

knows about. When interproeedural information is

introduced, there are more global variables known, and

potentially more global variables for which a pointer

can be an alias. In these applications interproeedural

pointer tracking may result in adverse optimization

effects. If the interproeedural pointer tracking algo-

rithm isn’t good enough, the transformation to

program-wide aliases list for each dereference will

introduce more aliases than would otherwise be present

in the normal procedural compilation. This may cause a

more constrained basic block, and fewer opportunities

for vectorization.

The BANDED application is an example where inter-

procedural pointer tracking failed to produce shorter

alias lists. The procedural compiler must only contend

with an average of 6.2 aliases per dereference, while the

interprocedural pointer tracking algorithm has caused an

average of 14.8 aliases per dereference. The effeets of

this increase are apparent by noting that there are now

386 dereferences instead of the original 374. Due to
more constrained basic blocks, fewer redundant refer-

ences were eliminated.

Using the standard memory manager embled the

Application Compiler to increase the number of exaet

pointer ranges from the 615 in the TRACE1 application

to 967 in the TRACE2 application. This resulted in

reducing the number of dereferences by 10 and the

avtxage aliases per derefemnce tkom 29.7 to 25.3. The

increase in the total dereference aliases in these applica-

tions does not have a negative effeet on optimization.

On the contrary, scalar optimization was able to reduce

the number of dereferences by 19 in TRACE1 and 16 in

TRACE2. This shows that pointer tracking is not just a

question of reducing aliases, but of putting them where

they redly belong. If key assumed aliases are removed

by pointer tracking, optimization improves despite the

increase in aetwd aliases on other dereferences.

The best case oeau-s when the inteqxocedural pointer

tracking algorithm creates fewer aliases at eaeh derefer-

enee despite having been transformed into program-

wide alias lists. The applications SOLVE, SPEECH,

LINALG, SURFACE, and CRYPTO have fewer

dereferences in the entire application due to better basic

block optimization. These applications and SIMPLEX

all show a significant demase in the average and max-

imum number of aliases present at dereferences.

Resulting optimization

Table 6 shows the result of using pointer tracking.

The fist column identifies the application. The next

two columns indicate how many loops were fully or

partially veetorized by the most recent release of the

CONVEX C compiler, when no command line options

or source directives are used to guide vectorization.

The following two columns indicate how many loops

were fully or partially vectorized by the Application

Compiler. The last two columns show the theoretical

maximum — how many loops could be vectmized by

manurdly inserting pragmas and making trivial changes

to the source code.

In all cases there was an improvement. It varied from

the minimal (one loop partially vectorized) to the

theoretical maximum achievable by manual editing of

the source. In half of the applications, the additional

benefit of pointer tracking enabled the compiler to fully

veetorize all the loops that were veetorizable.

Future work

Multi-level dereferences

We are currently investigating extending our initial

implementation to handle multi-level pointer derefer-
enees. We plan to create a single pointer range for vee-

tors of pointers, which receives targets from any of the

elements of that array. This will enable to us to deter-

mine whether there are common targets between two

19

different arrays of pointers. It will not solve the more

general problem of determining whether there are com-

mon targets between two elements of the same array of

pointers. We doubt that this problem can be solved at

compile-time.

Runtime pointer checking

Pointer Tracking causes a larger number of loops to

be automatically vectorizcd and parallelized than

before. Even though it is a definite improvemen~ it still

does not cause all potential vectorizable loops to be vec-

torized. The particular coding style of an application

can have a dramatic effect on the number of loops vec-

torized. In order to obtain the same level of vectoriza-

tion for C applications as is altvady available for FOR-
TRAN applications, we intend to implement runtime

pointer checking,

As a last resort, the Application Compiler will use

rurttime pointer checking to select potentially vector or

parallel lcmps. Two versions of every potentially vector

or parallel loop are created. One contains vector or

parallel code, the other scalar code. At runtime, one of

the pair of loops is selected, based on tests applied to

each of the pointer variables used in the loop. The tests

determine whether any pair of pointer references (where

one reference is an assign), can point to the same loca-

tion on different iterations of the loop. If not, the vector

or parallel version of the loop maybe used.

This approach is a last resort because it can add

significant overhead to the loop execution, If

simplifications can’t be made at compile time, the run-

time test may include several arithmetic and comparison

operations for each pair of pointers. These calculations

must be recomputed each time the loop preheader is

executed.

Related Work

Our work proceeds in the spirit of lYi801, [C861,

[ASU86] and [G88]. Aho et al. [ASU86] suggests a

special pass over the control-flow graph to summarize

pointer uses. We feel it is easier to employ the use-

definition information we have already computed. We
compute pointer targets at individual uses, as Guarna

does [G88], but we do not use tree-matching algorithms

which, the author concedes, may be quite expensive.

We currently track pointers of multiple indirection type,

for example “***char”; we can associate ranges with

such pointers, although not to dereferences of them.

See the section on Future Work above. Weihl ~80]

discusses tracking the actual-formal binding of pointer

parameters; we track this as well as the behavior of

pointer globals in a function call.

R=ent work on tracking linked data structures in

heap storage is described in ~H88], ~R89] and

[CWZ90]. Horwitz et al. WR89] give semantic char-

acterizations of data dependencies and uses these to

develop algorithms to compute safe approximations of

dependencies when heap-allocated stomge is mrmipu-

lated. We have avoided this type of analysis, concen-

trating instead on tracking pointers to arrays, records

and scalars, which we feel comprise a significant por-

tion of the pointer manipulations found in numerical

software. We do attempt to identify pointers referenc-

ing heap-allocated storage, however, in order to track

references to heap-based arrays. The assumptions made

by Chase et al. [CWZ90] demonstrate the difference

between analyzing pointm for Lisp-like languages and

for the C language. They “do not altow the unrestricted

pointer arithmetic that is possible in languages such as

C, and we do not deal with aliasing between variables.”

We are primarily interested in pointer arithmetic code,

with the blocks of array-like homogeneous data implied

in such situations, and our main goal is to reduce alias-

ing between variables.

[AJ881 and [GGL90] discuss problems involved in
attempting to parallelize C programs. Allen and John-

son [AJ88] point out that some aliasing problems asso-

ciated with actual-formal binding of pointer parameters

can be avoided by function inlining. Gannon et al

[GGL90] give examples of codes that need an analysis

of pointer usage to guarantee parallelizability.

Conclusions

Scientists and engineers are increasingly choosing C

as a language for application development. Such appli-

cations need the same high performarw as those coded

in FORTRAN. Interprocedural pointer tracking and

runtime pointer tracking can enable optimizing C com-

pilers to provide the same level of performance that

FORTRAN programmers have previously enjoyed on

high-performance computers. If C ptugrammers follow

a few simple stylistic suggestions, they can increase the

likelihood that an optimizing C compiler will produce

an efficient executable.

Use standard library functions for memory alloca-

tion.
A compiler that performs interprocedural pointer

tracking will know that certain functions allocate and

deallocate heap storage. If a code uses its own alloca-

tor, the compiler may not be able to determine this.

Explicitly declare functions that return pointers.
Pointer tracking needs to collect information about all

carriers of addresses, both variables and function

20

returns. If a function appears to return an integer (the

default), the compiler may not collect all the informa-

tion it needs prior to interprocedural pointer tracking.

Avoid global pointers to storage’ used in vector or
parallel loops.

Iterative solutions to the pointer tracking problem can

determine exact pointer ranges for global variables at

any point in the program. Our experience, however, is

that such solutions are far teo expensive for compiling

real applications. If a loop can be vectorized or paral-

lelized, it should use argument or local pointers.

Represent multi-dimensional arrays without multi-
ple indirection.

This paper includes three approaches to multi-

dimensional arrays, two of which work well with our

pointer tracking algorithm. Regardless of pointer track-
ing, some compiler/hardware combinations will give

better performance with explicit address arithmetic, and

others will do better with the extra indirection intro-

duced by vectors of vectors. Choosing an approach to

this problem depends

application.

Acknowledgements

on the target hardwtue for the

Randall Mercer developed the initial design for the

interprocedural optimizer. ‘l%e final design and imple-

mentation of the interprocedural optimizer were done

by the authors and Matthew Diaz.

Presley Smith, Frank Marshall, and Steve Wallach

believed we could make it work and gave us the time

and resources to do so.

References

[ASU86] Aho, A., Sethi, R., Unman, J. Compiler:

Principles, Techniques, and Tools. Addison-

Wesley, 1986, pp. 648-660.

[AJ88] Allen, R., and Johnson, S. Compiling C for

Vectorization, Parallelization, and Iniine Expan-

sion. In Proceedings of SIGPLAN ’88 Confer-

ence on Programming Language Design and

Implementation, July 1989, pp. 241-249.

[CWZ90] Chase, D., Wegman, M., and zadec~ F.

Analysis of Pointers and Structures. In Process-

ing of SIGPLAN ‘90 Conference on Program-

ming Lunguage Dem”gn and Implementatwn,
June 1990. pp. 296-310.

[C86] Coutant, D. Retargetable High-Level Alias

Analysis. in ACM Symposium on Principles of

Programming Lunguages, January, 1986, pp.

110-118.

[GGL90] Gannon, D., Guarna, V., and Lee, J. Static

Analysis and Runtime Support for Parallel Exe-

cution of C in Languages and Compilers for

Parallel Computing, MIT Press, 1990.

[G88] Guarna, V. A Technique for Analyzing

Pointer and Structure References in Parallel Res-

tructuring Compilers. Proceedings of interna-

tional Conference on Parallel Processing -1988
pp. 212-220, August 1988.

[HPR89J Horwitz, S., Pfeiffer, P., and Reps, T.

Dependence analysis for pointer variables.

Proceedings of SIGPLAN ’89 Conference on

Progr~”ng Lunguage Design and Implemen-

tatwn, June 1988, pp. 28-40.

kH88] Larus, J., and Hilfinger, P. Detecting

conflicts between structure accesses. Proceed-

ings of SIGP&lN ’88 Cort$erence on Program-

ming Language Design and Implementation, July

1989, pp. 21-34.

L90] Larus, J. Parallelism in Numeric and Symbolic

Programs. Technical Report issued by the U. of

Wisconsin - Madison.

l’M89] Metzger, R. Using C for SuperComputing.

Proceedings of Sofware Development ’89, pp

107-124.

PFI’V88] Press, W., Flannery, B., Teuklosky, S.,

Vettering, W. Numerical Recipes in C. Cam-

bridge University Press, 1988.

N80] Weihl, E. Interprocedural Data Flow Analysis

in the Presence of Pointers, Procedure Variables

and Label Variables. Seventh Annual ACM Sym-

posium on Principles of Progratnma”ng

Languages, 1980, pp. 83-94.

“,

Table 1
General Application

Application

:haracteri

Total
Functions

22
8
9

5

173

170

99

23.4

16

23

es

Total

Source

Lines

864

590

931

411

11442

11090

3774

814

1725

3311

Calls per

Function

max

42

45

51

16

74

74

194

52.9

72

35

avg

7.2

8.9

10.6

7.2

3.7

3.8

7.8

19.8

9.6

5.9

BANDED Banded equation solver

SOLV12 Various linear system solvers

SIMPLEX Simplex linear programming

FITCOEF Fit coefficients

TRACE1: Ray tracing

TRACE2: Ray tracing, modified

SPEECH Speech analysis

LINALG: Linear algebra library

SURFACE: 2-D gl%lphiCS

CRYPTO Applied number theory

Table 2
unities for Pointer Target Trackin

Total Total

Oppo

Total
Local
Arrays

38

24

43

29

122

122

356

40.9

45

47

Application

BANDED

SOLVE

SIMPLEX

FITCOEF

TRACE1

TRACE2

SPEECH

LINALG

SURFACE

CRYPTO

Allocations

per FunctionArrays

per Function

I

avg max

1.7 27

30 17

4.8 34

5.8 15

0.7 21
0.7 21
3.6 99
1.9 35.3
2.8 24
2.0 8

Global

Al-lays

Allo-

cations

18

10

25

0

0
135

8

2.7

0

17

avg

0.8

1.3

2.8

0

0
0.8

0.1

0.1
0.0
0.7

max

18

5

19

0

0
39

4

1.0

0

5

1

2
1
1

52

50

160

0.9

5

11

r Table 3
I

)intees

Global

ptr Vars

20

0
8

0
38

38

46

0

0

4

Opportunities for Poin

Application I Local

;er Tracking I

Argument

ptr Vars

I

avg max

1.5 4

1.8 3

2.2 13

1.6 2
1.9 8

1.9 8

0.4 2

2.0 3.8

2.7 5

1.6 4

I I ptr Vars
avg

1.3

max

4
10

10

5
22

22

6

1.9

17

9

BANDED

SOLVE

SIMPLEX

FITCOEF
TRACE1

TRACE2

SPEECH

LINALG

SURFACE

CRYPTO

1.9

1.8

1
0.9

0.9

0.8

0.3

3.9

1.8

22

Table 4
Characteristics of Dereferences Without Trackimz

Total

Number of

Dereferences

374

164

196

23

3011

2998

143

172.2

874

949

Dereferences

per Function

I

avg max

17 119

20.5 62

21.8 40

4.6 10

17.4 184

17.6 184

1.4 9

7.1 23.9

54.6 152

41.3 100

Total

Dereference

Aliases

2313

2M)5

6163

216

61943

61836

30613

1340

12343

18504

Aliases per

Dereference

Exact

Pointer

Ranges

o

0

0

0

0

0

0

0

0

0

Application

avg

6.2

12.2

31.4

9.4

20.6
20.6

214.1

6.3
14.1

19.5

max

60

26
50
26
79
79

293
8.0
49
45

BANDED

SOLVE

SIMPLEX

FITCOEF

TRACE1

TRACE2

SPEECH

LINALG

SURFACE

CRYPTO

Table 5
Characteristics of Derefer

Total Dereferences

rncesWith Tr:

Total
Dereference

Aliases

5723
1146
1913
283

88886
75415
4669
1300
4198
2451

king

Aliases per

Dereference

Application

BANDED

SOLVE

SIMPLEX

FITCOEF

TRACE1

TRACE2

SPEECH

LINALG

SURFACE

CRYPTO

1

Exact

Pointer

Ranges

126

32

28

17

615

967

69

129.1

479

108

Number of I per Function

Dereferences avg

386 17.5

157 19.6

196 21.8

25 5.0

2992 17.3

2982 17.5

136 1.4

165.2 6.8

832 52.0

301 13.1

max

126

62

40

12

184

184

9

26.8

152

67

max

45

25

49

24

57

57

158

14.9

43

23

avg

14.8

7.3

9.8

11.3

29.7

25.3

34.3

7.5

5.0

8.1

Table 6
Lo

Application

Optimization Resulting from Pointer Target Tracking

CONVEX C 4.1 I Application Compiler I Manual Modification
Total

Full

vector

1

3

2

4

1

1

38

10.3

6

6

Total Total

Full

vector

1

5

16

6

4

6
46

14.6

7

17

Total

Partial

vector

Total

Full

vector

9

15

16

6

10

10

46

NA

7

17

Total

Partial

vector

3

1

1

1

4

4

14

NA

1

0

Partial

vector

o
1

0

0

0

0
14

0.2

0
4

BANDED

SOLVE

SIMPLEX

FITCOEF

TRACE1

TRACE2

SPEECH

LINALG

SURFACE

CRYPTO

1

1

0
1
0
2

14

1.2

1

0

23

